首页> 外文期刊>Knowledge-Based Systems >Meta-knowledge dictionary learning on 1-bit response data for student knowledge diagnosis
【24h】

Meta-knowledge dictionary learning on 1-bit response data for student knowledge diagnosis

机译:元知识词典学习学生知识诊断的1位响应数据

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on the problem of student knowledge diagnosis that is a basic task of realizing personalized education. Most traditional methods rely on the question-concept matrix empirically designed by experts. However, the expert concepts are expensive and inter-overlapping in their constructions, leading to ambiguous explanations. With the intuition that each student can master a part of the knowledge involved in all questions, in this paper, we propose a novel learning-based model for student knowledge diagnosis, dubbed Meta-knowledge Dictionary Learning (metaDL). MetaDL aims to learn a meta-knowledge dictionary from student responses, where any knowledge entity (e.g., student, question or expert concept) is a linear combination of a few atoms in the meta-knowledge dictionary. The resultant problem could be effectively solved by developing the alternating direction method of multipliers. This study has three innovations: learning independent meta-knowledges instead of traditional complex concepts, sparely representing knowledge entity instead of densely weighted representation, and interpreting expert concepts with the resulting meta-knowledges. For evaluation, the diagnosis results from metaDL are used to group students and predict responses on two public datasets and a private dataset from our institution. The experiment results show that metaDL delivers an effective student knowledge diagnosis and then results in good performances on the two applications in comparison with other methods. This technique could provide significant insights into student's knowledge state and facilitate the progress on personalized education. (C) 2020 Published by Elsevier B.V.
机译:本文重点介绍了学生知识诊断的问题,这是实现个性化教育的基本任务。大多数传统方法依赖于专家凭经验设计的问题概念矩阵。然而,专家概念在其建筑中昂贵且互相重叠,导致含糊不清的解释。随着每个学生可以掌握所有问题所涉及的一部分知识的直觉,在本文中,我们提出了一种新颖的学习型号的学生知识诊断模型,称为Meta知识词典学习(Metadl)。 Metadl旨在从学生回答中学习元知识词典,其中任何知识实体(例如,学生,问题或专家概念)是元知识词典中几个原子的线性组合。通过开发乘法器的交替方向方法可以有效地解决所得到的问题。本研究有三种创新:学习独立的元知识而不是传统的复杂概念,很大程度上代表知识实体而不是密集的加权表示,并用所产生的元知识来解释专家概念。为了评估,Metadl的诊断结果用于对学生进行分组并预测来自我们机构的两个公共数据集和私人数据集的响应。实验结果表明,Metadl提供了有效的学生知识诊断,然后与其他方法相比,这两个应用中的良好表现。这种技术可以为学生的知识状态提供重大见解,并促进个性化教育的进展。 (c)2020由elsevier b.v发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号