首页> 外文期刊>Knowledge-Based Systems >Wasserstein based transfer network for cross-domain sentiment classification
【24h】

Wasserstein based transfer network for cross-domain sentiment classification

机译:基于Wassersein的转移网络,用于跨域情绪分类

获取原文
获取原文并翻译 | 示例

摘要

Automatic sentiment analysis of social media texts is of great significance for identifying people's opinions that can help people make better decisions. Annotating data is time consuming and laborious, and effective sentiment analysis on domains lacking of labeled data has become a problem. Crossdomain sentiment classification is a promising task, which leverages the source domain data with rich sentiment labels to analyze the sentiment polarity of the target domain lacking supervised information. Most of the existing researches usually explore algorithms that select common features manually to bridge different domains. In this paper, we propose a Wasserstein based Transfer Network (WTN) to share the domain-invariant information of source and target domains. We benefit from BERT to achieve rich knowledge and obtain deep level semantic information of text. The recurrent neural network with attention is used to capture features automatically, and Wasserstein distance is applied to estimate feature representations of source and target domains, which could help to capture significant domain-invariant features by adversarial training. Extensive experiments on Amazon datasets demonstrate that WTN outperforms other state-of-the-art methods significantly. Especially, the model behaves more stable across different domains. (C) 2020 Elsevier B.V. All rights reserved.
机译:社交媒体文本的自动情感分析对于识别人们可以帮助人们做出更好决策的意见具有重要意义。注释数据是耗时和艰苦的,有效的情感分析缺乏标记数据的域已成为一个问题。横角情绪分类是一个有前途的任务,它利用具有丰富情绪标签的源域数据来分析缺乏受监管信息的目标域的情感极性。大多数现有的研究通常探索手动选择常见功能以桥接不同域的算法。在本文中,我们提出了一种基于Wasserstein的转移网络(WTN)来共享源域和目标域的域不变信息。我们受益于BERT实现丰富的知识,并获得文本的深度级别语义信息。具有注意力的经常性神经网络用于自动捕获功能,并且施加Wassersein距离以估计源域和目标域的特征表示,这有助于通过对抗性培训捕获重大的域不变的功能。亚马逊数据集的广泛实验证明了WTN显着优于其他最先进的方法。特别是,模型在不同的域中的表现更稳定。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号