首页> 外文期刊>Intelligent data analysis >An attention network based on feature sequences for cross-domain sentiment classification
【24h】

An attention network based on feature sequences for cross-domain sentiment classification

机译:一种关注网络基于跨域情感分类的特征序列

获取原文
获取原文并翻译 | 示例

摘要

The difficulty of cross-domain text sentiment classification is that the data distributions in the source domain and the target domain are inconsistent. This paper proposes an attention network based on feature sequences (ANFS) for cross-domain sentiment classification, which focuses on important semantic features by using the attention mechanism. Particularly, ANFS uses a three-layer convolutional neural network (CNN) to perform deep feature extraction on the text, and then uses a bidirectional long short-term memory (BiLSTM) to capture the long-term dependency relationship among the text feature sequences. We first transfer the ANFS model trained on the source domain to the target domain and share the parameters of the convolutional layer; then we use a small amount of labeled target domain data to fine-tune the model of the BiLSTM layer and the attention layer. The experimental results on cross-domain sentiment analysis tasks demonstrate that ANFS can significantly outperform the state-of-the-art methods for cross-domain sentiment classification problems.
机译:跨域文本情绪分类的难度是源域和目标域中的数据分布不一致。本文提出了一种基于特征序列(ANF)的关注网络,用于跨域情绪分类,其专注于使用注意机制来关注重要的语义特征。特别地,ANFS使用三层卷积神经网络(CNN)对文本执行深度特征提取,然后使用双向长期内存(BILSTM)来捕获文本特征序列之间的长期依赖关系。我们首先将在源域上培训的ANFS模型传输到目标域并共享卷积层的参数;然后我们使用少量标记的目标域数据来微调Bilstm层和注意层的模型。跨域情绪分析任务的实验结果表明,ANF可以显着优于跨域情绪分类问题的最先进的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号