首页> 外文期刊>Knowledge-Based Systems >Collaborative topological filtering with multi-hop recurrent pathological aggregation
【24h】

Collaborative topological filtering with multi-hop recurrent pathological aggregation

机译:具有多跳复发病理聚集的协同拓扑滤波

获取原文
获取原文并翻译 | 示例

摘要

Learning vectorial representations of users and items from their interaction data is a core approach for Collaborative Filtering. While a user's or an item's representation is commonly built upon low-hop features such as IDs and interaction history, some recent works argue the existence of higher-hop interactions, thereby motivating the use of multi-hop topological knowledge in representation learning. However, existing methods in this area explore only the local pathological connections and thus ignore the overall semantics along paths. To this end, this paper introduces a new CF approach that learns to explicitly inject the multi-hop topological features of a user or an item as a whole into its representation in an end-to-end manner. Specifically, we explore the multi-hop topology via the paths connecting a user or an item to its neighbors at different hops. To capture the entire topological information, we seamlessly integrate aggregator function with a recurrent neural network to jointly extract salient neighborhood information and detect the pathological semantics. We develop two neural network models, DF-CTF and DW-CTF, where the former focuses on modeling each individual path and the latter focuses on adapting to the path entanglement in multi-hop structures. Furthermore, we evaluate our proposed approach on three real-world benchmark datasets and demonstrate its superior performance against state-of-the-art methods. (C) 2020 Elsevier B.V. All rights reserved.
机译:从其交互数据中学习用户和项目的矢量表示是用于协作过滤的核心方法。虽然用户或项目的表示通常是在诸如ID和交互历史的低跳功能之类的低跳功能之上,但最近的作品争论了高跳相互作用的存在,从而激励了在代表学习中使用多跳拓扑知识。然而,该区域的现有方法仅探索本地病理连接,从而沿着路径忽略整体语义。为此,本文介绍了一种新的CF方法,该方法学会以端到端的方式将用户或项目的多跳拓扑功能明确地注入其表示。具体而言,我们通过将用户或项目连接到其邻居的路径来探索多跳拓扑。为了捕获整个拓扑信息,我们将聚合器功能与经常性神经网络无缝集成,共同提取突出的邻域信息并检测病理语义。我们开发了两个神经网络模型,DF-CTF和DW-CTF,其中前者侧重于建模每个单独的路径,后者侧重于适应多跳结构中的路径纠缠。此外,我们评估了我们在三个现实世界基准数据集中的提出方法,并展示了其卓越的最先进方法的性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号