首页> 外文期刊>Knowledge-Based Systems >Mind your privacy: Privacy leakage through BCI applications using machine learning methods
【24h】

Mind your privacy: Privacy leakage through BCI applications using machine learning methods

机译:介意您的隐私:使用机器学习方法通​​过BCI应用程序的隐私泄漏

获取原文
获取原文并翻译 | 示例

摘要

With the digitization of almost every aspect of our lives, privacy leakage in cyber space has become a pressing concern. Brain-Computer Interface (BCI) systems have become more popular in recent years and are now being used for a variety of applications. BCI data represents an individual's brain activity at a given time. Like many other kinds of data, BCI data can be utilized for malicious purposes. Electroencephalography (EEG) is one of the most popular brain activity acquisition methods of BCI applications. More specifically, BCI games, represent one of the main EEG applications. However, a malicious BCI application (e.g. game) could allow an attacker to take advantage of an unsuspecting user happily enjoying a game and record the user's brain activity; by analyzing this data, the attacker can infer private information and characteristics regarding the user, without his/her consent or awareness. This study is the first to demonstrate the ability to predict and infer meaningful personality traits and cognitive abilities by analyzing resting-state EEG (rsEEG) recordings of an individual's brain activity using a variety of machine learning methods. A comprehensive set of raw rsEEG scans, along with the dissociation level and executive function (EF) performance measures, for the 162 subjects were used in our evaluation. The best results we achieved were an accuracy of 73% for dissociation classification and less than 16% mean absolute error in predicting performance for all examined EFs. These encouraging results are better than those presented in prior research, both in terms of accuracy and data-validity and dataset size. (C) 2020 Elsevier B.V. All rights reserved.
机译:随着我们生活中几乎各个方面的数字化,网络空间的隐私泄漏已成为一个紧迫的问题。脑电器界面(BCI)系统近年来变得更加流行,现在正在用于各种应用。 BCI数据代表了一个特定时间的个人大脑活动。与许多其他类型的数据一样,BCI数据可以用于恶意目的。脑电图(EEG)是BCI应用最受欢迎的大脑活动采集方法之一。更具体地说,BCI游戏,代表一个主要的EEG应用程序之一。然而,恶意BCI应用程序(例如游戏)可以允许攻击者利用令人难挑选的用户愉快地享受游戏并记录用户的大脑活动;通过分析这些数据,攻击者可以推断有关用户的私人信息和特征,而没有他/她的同意或意识。本研究首先通过分析使用各种机器学习方法分析个体脑活动的休息状态EEG(RSEEG)记录来展示预测和推断有意义的人格性状和认知能力的能力。在我们的评估中使用了一套全面的RAW RSEEG扫描,以及解离水平和执行功能(EF)绩效措施,用于我们的评估。我们实现的最佳结果是解离分类的准确性为73%,并且在预测所有检查的EFS的性能方面少于16%的绝对误差。这些令人鼓舞的结果比在准确性和数据有效性和数据集大小方面都优于先前研究的结果。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第21期|105932.1-105932.21|共21页
  • 作者单位

    Ben Gurion Univ Negev Cyber Secur Res Ctr Malware Lab Beer Sheva Israel|Ben Gurion Univ Negev Dept Software & Informat Syst Engn Beer Sheva Israel;

    Ben Gurion Univ Negev Cyber Secur Res Ctr Malware Lab Beer Sheva Israel;

    Ben Gurion Univ Negev Dept Psychol Beer Sheva Israel|Ben Gurion Univ Negev Zlotowski Ctr Neurosci Beer Sheva Israel;

    Ben Gurion Univ Negev Cyber Secur Res Ctr Malware Lab Beer Sheva Israel|Ben Gurion Univ Negev Dept Ind Engn & Management POB 653 IL-8410501 Beer Sheva Israel;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Privacy leakage; Brain-computer interface; BCI; EEG; BCI games;

    机译:隐私泄漏;脑电脑界面;BCI;脑电图;BCI游戏;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号