首页> 外文期刊>Knowledge-Based Systems >Multi-modal generative adversarial network for zero-shot learning
【24h】

Multi-modal generative adversarial network for zero-shot learning

机译:用于零射击学习的多模态生成对抗网络

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel approach for Zero-Shot Learning (ZSL), where the test instances are from the novel categories that no visual data are available during training. The existing approaches typically address ZSL by embedding the visual features into a category-shared semantic space. However, these embedding-based approaches easily suffer from the "heterogeneity gap" issue since a single type of class semantic prototype cannot characterize the categories well. To alleviate this issue, we assume that different class semantics reflect different views of the corresponding class, and thus fuse various types of class semantic prototypes resided in different semantic spaces with a feature fusion network to generate pseudo visual features. Through the adversarial mechanism of the real visual features and the fused pseudo visual features, the complementary semantics in various spaces are effectively captured. Experimental results on three benchmark datasets demonstrate that the proposed approach achieves impressive performances on both traditional ZSL and generalized ZSL tasks. (C) 2020 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种新的零射击学习方法(ZSL),其中测试实例来自新型类别,即在训练期间没有可视数据。现有方法通常通过将视觉功能嵌入到类别共享语义空间中来寻址ZSL。然而,由于单一类别的语义原型不能良好地描述,这些基于嵌入的方法很容易受到“异质性差距”问题。为了缓解这个问题,我们假设不同的类语义反映了相应类的不同视图,从而融合在不同语义空间中的各种类型的类语义原型,其中具有特征融合网络来生成伪视觉特征。通过真实的视觉特征和融合伪视觉特征的对抗机制,有效地捕获了各种空间中的互补语义。三个基准数据集上的实验结果表明,该方法在传统ZSL和广义ZSL任务中实现了令人印象深刻的性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号