首页> 外文期刊>Knowledge-Based Systems >Finding influential nodes in social networks based on neighborhood correlation coefficient
【24h】

Finding influential nodes in social networks based on neighborhood correlation coefficient

机译:基于邻域相关系数的社交网络中发现有影响的节点

获取原文
获取原文并翻译 | 示例

摘要

Finding the most influential nodes in social networks has significant applications. A number of methods have been recently proposed to estimate influentiality of nodes based on their structural location in the network. It has been shown that the number of neighbors shared by a node and its neighbors accounts for determining its influence. In this paper, an improved cluster rank approach is presented that takes into account common hierarchy of nodes and their neighborhood set. A number of experiments are conducted on synthetic and real networks to reveal effectiveness of the proposed ranking approach. We also consider ground-truth influence ranking based on Susceptible-Infected-Recovered model, on which performance of the proposed ranking algorithm is verified. The experiments show that the proposed method outperforms state-of-the-art algorithms. (C) 2020 Elsevier B.V. All rights reserved.
机译:在社交网络中找到最有影响力的节点具有重要应用。最近已经提出了许多方法来基于网络中的结构位置来估计节点的影响力。已经表明,节点和其邻居共享的邻居数量用于确定其影响。在本文中,提出了一种改进的群集等级方法,考虑了节点的公共层次和邻域集。对合成和实际网络进行了许多实验,以揭示所提出的排名方法的有效性。我们还考虑基于敏感感染恢复模型的基本真理影响排名,验证了所提出的排名算法的性能。实验表明,该方法优于最先进的算法。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号