首页> 外文期刊>Knowledge-Based Systems >Boosted K-nearest neighbor classifiers based on fuzzy granules
【24h】

Boosted K-nearest neighbor classifiers based on fuzzy granules

机译:基于模糊颗粒的k最近邻分类器提升

获取原文
获取原文并翻译 | 示例

摘要

K-nearest neighbor (KNN) is a classic classifier, which is simple and effective. Adaboost is a combination of several weak classifiers as a strong classifier to improve the classification effect. These two classifiers have been widely used in the field of machine learning. In this paper, based on information fuzzy granulation, KNN and Adaboost, we propose two algorithms, a fuzzy granule K-nearest neighbor (FGKNN) and a boosted fuzzy granule K-nearest neighbor (BFGKNN), for classification. By introducing granular computing, we normalize the process of solving problem as a structured and hierarchical process. Structured information processing is focused, so the performance including accuracy and robust can be enhanced to data classification. First, a fuzzy set is introduced, and an atom attribute fuzzy granulation is performed on samples in the classified system to form fuzzy granules. Then, a fuzzy granule vector is created by multiple attribute fuzzy granules. We design the operators and define the measure of fuzzy granule vectors in the fuzzy granule space. And we also prove the monotonic principle of the distance of fuzzy granule vectors. Furthermore, we also give the definition of the concept of K-nearest neighbor fuzzy granule vector and present FGKNN algorithm and BFGKNN algorithm. Finally, we compare the performance among KNN, Back Propagation Neural Network (BPNN), Support Vector Machine (SVM), Logistic Regression (LR), FGKNN and BFGKNN on UCI data sets. Theoretical analysis and experimental results show that FGKNN and BFGKNN have better performance than that of the methods mentioned above if the appropriate parameters are given. (C) 2020 Elsevier B.V. All rights reserved.
机译:K-COMBERY邻居(KNN)是一种经典的分类器,这是简单有效的。 Adaboost是几种弱分类器的组合,作为强大分类器,以提高分类效果。这两个分类器已广泛用于机器学习领域。本文基于信息模糊造粒,KNN和ADABOOST,我们提出了两种算法,模糊颗粒K-最近邻(FGKNN)和升压模糊颗粒K-最近邻(BFGKNN),用于分类。通过引入粒度计算,我们将解决问题的过程标准化为结构化和分层过程。结构化信息处理专注,因此可以增强包括准确性和鲁棒的性能,以增强数据分类。首先,介绍模糊组,并且对分类系统中的样品进行原子属性模糊造粒以形成模糊颗粒。然后,由多个属性模糊颗粒产生模糊颗粒载体。我们设计操作员,并在模糊颗粒空间中定义模糊颗粒矢量的测量。我们还证明了模糊颗粒载体距离的单调原理。此外,我们还给出了K-最近邻模糊颗粒矢量的概念的定义和本发明的FGKNN算法和BFGKNN算法。最后,我们在UCI数据集上比较KNN,后传播神经网络(BPNN),支持向量机(SVM),逻辑回归(LR),FGKNN和BFGKN的性能。理论分析和实验结果表明,如果给出适当的参数,FGKNN和BFGKN具有比上述方法的性能更好。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第may11期|105606.1-105606.13|共13页
  • 作者

    Li Wei; Chen Yumin; Song Yuping;

  • 作者单位

    Xiamen Univ Technol Sch Comp & Informat Engn Xiamen 361024 Peoples R China;

    Xiamen Univ Technol Sch Comp & Informat Engn Xiamen 361024 Peoples R China;

    Xiamen Univ Sch Math Sci Xiamen 361005 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Granule computing; Fuzzy sets; Machine learning;

    机译:颗粒计算;模糊套;机器学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号