首页> 外文期刊>Knowledge-Based Systems >Decomposition-based Bayesian network structure learning algorithm using local topology information
【24h】

Decomposition-based Bayesian network structure learning algorithm using local topology information

机译:基于分解的贝叶斯网络结构学习算法使用本地拓扑信息

获取原文
获取原文并翻译 | 示例

摘要

Hybrid learning algorithms which integrate the merits of the constraint-based methods and the search-and-score methods are used to cope with Bayesian network (BN) structure estimation problem. However, such simple and crude synthesis techniques always consider the global topology information during the learning process and attempt to directly search for the optimal network structure in the enormous solution space for large-scale BNs, resulting in prohibitive computational cost as well as low learning accuracy. Therefore, we propose a novel hybrid structure learning algorithm based on the idea of model decomposition, which takes into account the knowledge of local neighborhood structures. The proposed method works in four stages. We first draft an undirected independence graph by using an efficient Markov blanket discovery approach, and then split the entire network into a series of subgraphs. After learning the small BNs from the observed data, the resultant topology can be obtained by combining these small BNs. Experiments on different benchmark BNs and the varying data sets demonstrate that the proposed algorithm generally gains the better performance of structure recovery than other representative methods, especially for large-scale BNs. (C) 2020 Elsevier B.V. All rights reserved.
机译:混合学习算法,其集成了基于约束的方法的优点和搜索和分数方法来应对贝叶斯网络(BN)结构估计问题。然而,如此简单且粗略的合成技术始终考虑在学习过程中的全局拓扑信息,并试图直接搜索大规模BNS的巨大解决方案空间中的最佳网络结构,从而导致禁止的计算成本以及低学习精度。因此,我们提出了一种基于模型分解思想的新型混合结构学习算法,其考虑了本地邻域结构的知识。所提出的方法在四个阶段工作。我们首先使用高效的马尔可夫毯发现方法起草无向独立性图表,然后将整个网络分成一系列子图。在从观察到的数据学习小BNS之后,可以通过组合这些小型BNS来获得所得到的拓扑。在不同的基准BNS和变化数据集上的实验表明,所提出的算法通常提高结构恢复的性能比其他代表方法更好,尤其是对于大型BNS。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号