首页> 外文期刊>Evolutionary Computation, IEEE Transactions on >Using a Local Discovery Ant Algorithm for Bayesian Network Structure Learning
【24h】

Using a Local Discovery Ant Algorithm for Bayesian Network Structure Learning

机译:使用局部发现蚂蚁算法进行贝叶斯网络结构学习

获取原文
获取原文并翻译 | 示例

摘要

Bayesian networks (BNs) are knowledge representation tools capable of representing dependence or independence relationships among random variables. Learning the structure of BNs from datasets has received increasing attention in the last two decades, due to the BNs' capacity of providing good inference models and discovering the structure of complex domains. One approach for BNs' structure learning from data is to define a scoring metric that evaluates the quality of the candidate networks, given a dataset, and then apply an optimization procedure to explore the set of candidate networks. Among the most frequently used optimization methods for BN score-based learning is greedy hill climbing (GHC) search. This paper proposes a new local discovery ant colony optimization (ACO) algorithm and a hybrid algorithm max-min ant colony optimization (MMACO), based on the local discovery algorithm max-min parents and children (MMPC) and ACO to learn the structure of a BN. In MMACO, MMPC is used to construct the skeleton of the BN and ACO is used to orientate the skeleton edges, thus returning the final structure. The algorithms are applied to several sets of benchmark networks and are shown to outperform the GHC and simulated annealing algorithms.
机译:贝叶斯网络(BN)是能够表示随机变量之间的依赖关系或独立性关系的知识表示工具。在过去的二十年中,由于BN具有提供良好的推理模型和发现复杂域结构的能力,因此从数据集中学习BN的结构受到越来越多的关注。 BN从数据学习结构的一种方法是定义一个评分指标,该指标评估给定数据集的候选网络的质量,然后应用优化程序来探索候选网络集。在基于BN分数的学习中最常用的优化方法之一是贪婪爬山(GHC)搜索。提出了一种新的局部发现蚁群算法(ACO)和混合算法最大最小蚁群算法(MMACO)。国阵在MMACO中,MMPC用于构造BN的骨架,而ACO用于定向骨架边缘,从而返回最终结构。该算法已应用于几套基准网络,并显示出优于GHC和模拟退火算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号