首页> 外文期刊>Knowledge-Based Systems >Multi-objective evolutionary computation for topology coverage assessment problem
【24h】

Multi-objective evolutionary computation for topology coverage assessment problem

机译:拓扑覆盖评估问题的多目标进化计算

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the smart city has gained large traction in government, academia, and business. Many real-world applications of smart cities can be formed to a topology graph and to optimally select a specified number of vertices to minimize the uncovered part of the topology graph. An example application is the optimal installation of a specified number of monitors at the crossroads of a city. Such a minimization problem is named a topology coverage optimization problem (TCOP) in this study, and it is a single-objective optimization problem (SOP). However, in actual situations, determining such a specific number a priori is usually difficu instead, multiple numbers would be provided to us by the decision-makers and the minimum objective value, as well as the optimal installation solution about each number, is solicited from us such a TCOP about multiple numbers is referred to as "topology coverage assessment problem (TCAP)". Hence, the TCAP consists of a series of SOPs (i.e., a series of TCOP5) each of which is NP-hard to optimize. This study introduces a multi-objective approach that is able to optimize all these TCOP5 simultaneously it is capable of obtaining high quality results about all given numbers at the same time. Besides the simultaneous problem-solving ability, our approach, namely MoCover, also statistically significantly improved the objective value about each provided number, particularly, the vertex cover number result, because of the mutual promoting relations between the TCOP5 and the exploitation of the relations during the optimization process. In this paper, the generalization of MoCover to a class of similar problems is also introduced and discussed. (C) 2019 Elsevier B.V. All rights reserved.
机译:近年来,智能城市在政府,学术界和业务中取得了大量的牵引力。许多真实世界的智能城市应用可以形成为拓扑图,并最佳地选择指定数量的顶点以最小化拓扑图的未发现部分。示例应用程序是城市十字路口指定数量的监视器的最佳安装。这种最小化问题被命名为本研究中的拓扑覆盖优化问题(TCOP),它是一个单目标优化问题(SOP)。但是,在实际情况下,确定这种特定的数字通常困难;相反,决策者将向我们提供多个数字,以及最小的客观值,以及关于每个数字的最佳安装解决方案,从我们提供关于多个数字的TCOP被称为“拓扑覆盖评估问题(TCAP)“。因此,TCAP由一系列SOP(即,一系列TCOP5)组成,每个SOP是NP难以优化的。本研究介绍了一种多目标方法,能够同时优化所有这些TCOP5,它能够同时获得所有给定号的高质量结果。除了同时解决问题的能力,我们的方法,即莫加尔,也统计上显着改善了每个提供的数量的目标值,特别是顶点盖数结果,因为TCOP5与关系的利用之间的相互促进关系优化过程。在本文中,还引入并讨论了蒙太镜对一类类似问题的概括。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号