首页> 外文期刊>Knowledge-Based Systems >Improving the effectiveness of intrusion detection systems for hierarchical data
【24h】

Improving the effectiveness of intrusion detection systems for hierarchical data

机译:提高入侵检测系统的分层数据的有效性

获取原文
获取原文并翻译 | 示例

摘要

A high false alarm rate of anomaly-based, on-line, high throughput intrusion detection systems (IDS) is a serious concern, often rendering these IDSs impractical for use in real-world systems. The usual approach to this problem is to try to decrease or limit the false alarm rate. However, IDSs that adopt this approach are usually attack or algorithm specific and are not considered generally applicable. In this paper, we propose a general method for lowering the false positive rate (FPR) of any existing state-of-the-art anomaly-based IDS for hierarchical data, while minimizing the potential decrease in the detection rate. This is done by automatically learning the underlying hierarchy of sub-classes from a dataset of normal instances and iteratively applying the IDS on each sub-class. Compared to previous work, our method is more practical because it does not require users to possess any knowledge about the data's hierarchical structure or make assumptions about its distribution. We evaluate our method's ability to improve the effectiveness of recent state-of-the-art IDSs on a variety of attacks on operational networks of IP cameras and loT devices as well as attacks on the MIL-STD-1553 communication protocol. We test numerous configurations of all IDSs and show that our method can improve detection performance in more than 98% of our tests. We demonstrate that our method can improve IDSs that operate on any type of data, e.g. independent feature vector data instances or sequences of dependent data records. By evaluating on datasets with different attack occurrence rates, we also demonstrate that our ability to improve an IDS's effectiveness becomes more significant as attacks occur more rarely. This further emphasizes our method's contribution to real life intrusion detection scenarios in which the attack occurrence rates can be very low. (C) 2019 Elsevier B.V. All rights reserved.
机译:基于异常的,在线,高吞吐量入侵检测系统(IDS)的高误报率是一个严重的问题,通常渲染这些IDS在现实世界系统中使用不切实际。此问题的通常方法是尝试减少或限制误报率。但是,采用此方法的IDS通常是特定的攻击或算法,并且不被认为通常适用。在本文中,我们提出了一种用于降低任何现有的最先进的基于异常的IDS的假阳性率(FPR)进行分层数据,同时最小化检测率的电位降低。这是通过自动从正常实例的数据集中学习子类的基础层次结构来完成的,并迭代地应用于每个子类上的ID。与以前的工作相比,我们的方法更实用,因为它不要求用户拥有任何关于数据的分层结构的知识,或者对其分发做出假设。我们评估了我们的方法,以提高最近最先进的IDS的有效性在IP摄像机和批次设备的运营网络上的各种攻击以及对MIL-STD-1553通信协议的攻击。我们测试所有IDS的许多配置,并显示我们的方法可以提高超过98%的测试中的检测性能。我们展示了我们的方法可以改进在任何类型的数据上运行的IDS,例如,独立的特征矢量数据实例或依赖数据记录序列。通过评估具有不同攻击发生率的数据集,我们还表明,随着攻击越来越罕见,我们提高IDS效率的能力变得更加重要。这进一步强调了我们的方法对现实生活入侵检测场景的贡献,其中攻击发生率可能非常低。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号