首页> 外文期刊>Knowledge-Based Systems >Epilepsy seizure detection using complete ensemble empirical mode decomposition with adaptive noise
【24h】

Epilepsy seizure detection using complete ensemble empirical mode decomposition with adaptive noise

机译:使用具有自适应噪声的完整整体经验模式分解,对癫痫发作进行检测

获取原文
获取原文并翻译 | 示例

摘要

Background: Epileptic seizure detection is traditionally performed by visual observation of Electroencephalogram (EEG) signals. Owing to its onerous and time-consuming nature, seizure detection based on visual inspection hinders epilepsy diagnosis, monitoring, and large-scale data analysis in epilepsy research. So, there is a dire need of an automatic seizure detection scheme.Method: An automated scheme for epileptic seizure identification is developed in thii study. Here we utilize a signal processing technique, namely-complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) for epileptic seizure identification. First, we decompose segments of EEG signals into intrinsic mode functions by CEEMDAN. The mode functions are then modeled by normal inverse Gaussian (NIG) pdf parameters. In this work, NIG modeling is employed in conjunction with CEEMDAN for epileptic seizure detection for the first time. The efficacy of the NIG parameters in the CEEMDAN domain is demonstrated by intuitive, graphical, and statistical analyses. Adaptive Boosting, an eminent ensemble learning based classification model, is implemented to perform classification.Results: Experimental outcomes suggest that the algorithmic performance of the proposed scheme is promising in all the cases of clinical significance. Comparative evaluation of algorithmic performance with the state-of-the-art schemes manifest that the seizure detection scheme proposed herein outperforms competing algorithms in terms of accuracy, sensitivity, specificity, and Cohen's Kappa coefficient.Conclusions: Upon its implementation in clinical practice, the proposed seizure detection scheme will eliminate the onus of medical professionals and expedite epilepsy research and diagnosis. (C) 2019 Elsevier B.V. All rights reserved.
机译:背景:癫痫发作的检测传统上是通过目测脑电图(EEG)信号进行的。由于其繁琐且费时的性质,基于视觉检查的癫痫发作检测阻碍了癫痫研究中的癫痫诊断,监测和大规模数据分析。因此,迫切需要一种自动的癫痫发作检测方案。方法:在这项研究中开发了一种自动的癫痫发作识别方案。在这里,我们利用信号处理技术,即具有自适应噪声的完全集成经验模式分解(CEEMDAN),用于癫痫发作的识别。首先,我们通过CEEMDAN将EEG信号的各个部分分解为固有模式函数。然后,通过正常的逆高斯(NIG)pdf参数对模式函数进行建模。在这项工作中,NIG建模与CEEMDAN一起首次用于癫痫发作的检测。通过直观,图形和统计分析证明了NIG参数在CEEMDAN域中的有效性。结果:实验结果表明,该方案的算法性能在所有具有临床意义的情况下都是有希望的。对算法性能与最新方案的比较评估表明,本文提出的癫痫发作检测方案在准确性,敏感性,特异性和科恩卡伯系数方面均优于竞争算法。结论:在临床实践中实施后,提出的癫痫发作检测方案将消除医学专业人员的负担,并加快癫痫的研究和诊断。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第5期|405-416|共12页
  • 作者

  • 作者单位

    North South Univ Dept Elect & Comp Engn Dhaka Bangladesh;

    Effat Univ Coll Engn Comp Sci Dept Jeddah 21478 Saudi Arabia;

    Victoria Univ Ctr Appl Informat Melbourne Vic 8001 Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    EEG; Epilepsy seizure; CEEMDAN; Normal inverse Gaussian pdf; AdaBoost;

    机译:脑电图;癫痫发作;CEEMDAN;正态逆高斯pdf;AdaBoost;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号