首页> 外文期刊>Knowledge-Based Systems >Consistency and consensus-driven models to personalize individual semantics of linguistic terms for supporting group decision making with distribution linguistic preference relations
【24h】

Consistency and consensus-driven models to personalize individual semantics of linguistic terms for supporting group decision making with distribution linguistic preference relations

机译:一致性和共识驱动模型来个性化语言术语的各个语义,以支持具有分布语言偏好关系的群体决策

获取原文
获取原文并翻译 | 示例

摘要

Distribution linguistic preference relations (DLPRs) that model linguistic expressions with the aid of probabilistic distributions of multiple linguistic terms provide an effective tool to accurately elicit the preferences of decision makers (DMs) in linguistic decisions. Meanwhile, numerical scale models have been suitable choices for DMs to handle computing with words when solving linguistic decision problems. This study focuses on improving the group decision making (GDM) with DLPRs via the help of numerical scale models by filling the following gap. It is obvious that words might exhibit different meanings for different people. DMs may have a varying understanding of a given linguistic term in real-world fuzzy linguistic GDM. Setting personalized semantics of the linguistic terms for each DM becomes a critical task in GDM with DLPRs. To do this, we first define an improved numerical scale model to facilitate the linkages between DLPRs and numerical fuzzy preference relations. Then an additive consistency and a multiplicative consistency of DLPRs are analyzed, and the corresponding consistency indices are provided to measure the consistency levels of DLPRs. Based on them, we develop two consistency-driven optimization models to personalize numerical scales for linguistic terms with individual DLPRs. Next, we develop an approach for addressing GDM with DLPRs. In the proposed approach, a dissimilarity-based consensus measure is designed. To determine a group numerical scale for the linguistic terms with the corresponding group DLPR, two consistency and consensus-driven optimization models are constructed. Finally, illustrative examples are analyzed using the proposed approach to demonstrate its applicability and validity. (C) 2019 Elsevier B.V. All rights reserved.
机译:借助多种语言术语的概率分布对语言表达进行建模的分布语言偏好关系(DLPR)提供了一种有效的工具,可以准确地引起决策者(DM)在语言决策中的偏好。同时,在解决语言决策问题时,数字比例模型已成为DM处理单词的合适选择。这项研究的重点是通过弥合以下差距,借助数字比例尺模型,借助DLPR改善群体决策(GDM)。显然,单词对不同的人可能表现出不同的含义。 DM对现实世界中的模糊语言GDM中的给定语言术语可能会有不同的理解。在具有DLPR的GDM中,为每个DM设置语言术语的个性化语义成为一项关键任务。为此,我们首先定义一个改进的数字比例模型,以促进DLPR和数字模糊偏好关系之间的联系。然后分析了DLPR的加性一致性和乘法一致性,并提供了相应的一致性指标来衡量DLPR的一致性水平。基于它们,我们开发了两个一致性驱动的优化模型,以使用单个DLPR来个性化语言术语的数字量表。接下来,我们开发一种使用DLPR解决GDM的方法。在提出的方法中,设计了一种基于差异的共识度量。为了确定具有相应组DLPR的语言术语的组数字量表,构建了两个一致性和共识驱动的优化模型。最后,使用提出的方法对示例进行了分析,以证明其适用性和有效性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第15期|105078.1-105078.22|共22页
  • 作者

  • 作者单位

    Hefei Univ Technol Sch Management Box 270 Hefei 230009 Anhui Peoples R China|Minist Educ Key Lab Proc Optimizat & Intelligent Decis Making Box 270 Hefei 230009 Anhui Peoples R China|Univ Alberta Dept Elect & Comp Engn Edmonton AB T6R 2V4 Canada;

    Hefei Univ Technol Sch Management Box 270 Hefei 230009 Anhui Peoples R China|Minist Educ Key Lab Proc Optimizat & Intelligent Decis Making Box 270 Hefei 230009 Anhui Peoples R China;

    Univ Alberta Dept Elect & Comp Engn Edmonton AB T6R 2V4 Canada|King Abdulaziz Univ Dept Elect & Comp Engn Fac Engn Jeddah 21589 Saudi Arabia|Polish Acad Sci Syst Res Inst Warsaw Poland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Group decision making (GDM); Numerical scale model; Personalized individual semantics; Consensus measure; Distribution linguistic preference relation (DLPR);

    机译:团体决策(GDM);数值比例模型;个性化的个人语义;共识措施;分布语言偏好关系(DLPR);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号