首页> 外文期刊>Knowledge-Based Systems >An efficient active learning method for multi-task learning
【24h】

An efficient active learning method for multi-task learning

机译:一种用于多任务学习的有效主动学习方法

获取原文
获取原文并翻译 | 示例

摘要

In multi-task learning, the sharing of information between related tasks affects and promotes the learning of each task. However, the traditional multi-task learning techniques always require sufficient labeled data to improve the learning of each task, and labeling samples is always expensive in practice. In this paper, we propose two variants of active learning methods for multi-task classification. In the uncertainty step, we propose the support vector preservation criterion that evaluates uncertainty at the level of classifier, which is called classifier-level uncertainty (CLU). In the diversity step, we propose two diversity criteria that evaluate diversity by the clustering method and the partition method respectively, which are called clustering-based diversity (CBD) and partition-based diversity (PBD) respectively. Each diversity criterion together with the uncertainty criterion is to form an active learning method for multi-task learning. In addition, the proposed support vector preservation criterion selects local informative samples which determine the hyperplane for each task. Furthermore, in order to maintain the distribution structure of the samples, we put forward the micro-kernel k-means clustering method and partition-based method to select global informative samples from the non-support vectors. By incorporating the local and global informative samples into active learning, we propose the two active learning methods for multi-task problems. We evaluate the effectiveness of the proposed methods by conducting experiments with other active learning methods. The experimental results show that the proposed two methods perform better than other active learning methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:在多任务学习中,相关任务之间的信息共享影响并促进了每个任务的学习。然而,传统的多任务学习技术总是需要足够的标记数据来改善每个任务的学习,并且在实践中标记样本总是很昂贵。在本文中,我们提出了主动学习方法的两种变体,用于多任务分类。在不确定性步骤中,我们提出了支持向量保留准则,该准则在分类器级别评估不确定性,这称为分类器级别不确定性(CLU)。在分集步骤中,我们提出了两种分别通过聚类方法和分区方法评估分集的分集标准,分别称为基于聚类的分集(CBD)和基于分区的分集(PBD)。每个多样性标准与不确定性标准一起形成一种主动学习方法,用于多任务学习。另外,提出的支持向量保存准则选择局部信息样本,这些样本确定每个任务的超平面。此外,为了维持样本的分布结构,我们提出了微核k均值聚类和基于分区的方法,从非支持向量中选择全局信息样本。通过将局部和全局信息样本纳入主动学习中,我们提出了针对多任务问题的两种主动学习方法。我们通过与其他主动学习方法进行实验来评估所提出方法的有效性。实验结果表明,所提出的两种方法比其他主动学习方法表现更好。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号