首页> 外文期刊>Knowledge-Based Systems >Superspreaders and superblockers based community evolution tracking in dynamic social networks
【24h】

Superspreaders and superblockers based community evolution tracking in dynamic social networks

机译:动态社交网络中基于超级传播者和超级阻止者的社区演化跟踪

获取原文
获取原文并翻译 | 示例

摘要

Detecting and tracking communities in dynamic social networks has been a grand multidisciplinary challenge. There are two key steps in tracking the community evolution of dynamic social networks, including dynamic community detection and evolutionary events identification. For dynamic community detection, incremental clustering has been used as one of the most efficient methods; however, incrementally detecting network communities may result in partition errors such that continuous error accumulation will cause a discrepancy between the computed community structure and the underlying ground-truth. For evolutionary events identification, core-node-based methods have been widely employed; however, they do not distinguish between the heterogeneous contributions of core nodes to different evolutionary events, thereby resulting in a reduced accuracy of evolutionary event identification. This paper introduces a novel two-stage method that circumvents both of these problems simultaneously. Firstly, we propose an error accumulation sensitive (EAS) incremental community detection method for dynamic social networks. In our novel EAS method, rather than updating the community structure partially, a dynamic network snapshot is totally re-partitioned once the error accumulation degree of incremental clustering exceeds a pre-defined threshold. Secondly, to identify different critical evolution events, we introduce a superspreaders and superblockers (SAS) based community evolution tracking method for dynamic social networks which utilizes the properties of superspreader and superblocker nodes, the two types of core nodes related to spreading outbreaks in social networks. Experiments conducted on artificial and real-world social networks demonstrate that our proposed method can both efficiently detect dynamic network communities and accurately identify all critical evolutionary events, outperforming a total of eight competing methods. Our two-stage EAS-SAS approach could thus represent a potential method of choice for many real-world applications to community discovery and community evolution tracking in dynamic social networks. (C) 2019 Elsevier B.V. All rights reserved.
机译:在动态社交网络中检测和跟踪社区一直是多学科的巨大挑战。跟踪动态社交网络的社区演变有两个关键步骤,包括动态社区检测和进化事件识别。对于动态社区检测,增量聚类已被用作最有效的方法之一。但是,增量检测网络社区可能会导致分区错误,从而导致持续的错误累积将导致计算出的社区结构与基础事实之间的差异。对于进化事件的识别,基于核心节点的方法已被广泛采用。但是,它们不能区分核心节点对不同进化事件的异质贡献,从而导致进化事件识别的准确性降低。本文介绍了一种新颖的两阶段方法,可同时解决这两个问题。首先,我们提出了一种针对动态社交网络的错误累积敏感(EAS)增量社区检测方法。在我们新颖的EAS方法中,一旦增量聚类的错误累积程度超过预定义的阈值,就可以完全重新划分动态网络快照,而不是部分地更新社区结构。其次,为了识别不同的关键进化事件,我们介绍了一种基于超级传播者和超级阻止者(SAS)的动态社交网络社区演化跟踪方法,该方法利用了超级传播者和超级阻止者节点的属性,这两种类型的核心节点与社交网络中的爆发爆发有关。在人工和现实世界社交网络上进行的实验表明,我们提出的方法既可以有效地检测动态网络社区,又可以准确地识别所有关键的进化事件,胜过总共八种竞争方法。因此,我们的两阶段EAS-SAS方法可能是许多现实世界中动态社交网络中社区发现和社区演变跟踪应用的潜在选择方法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号