首页> 外文期刊>Knowledge-Based Systems >A self-training method based on density peaks and an extended parameter-free local noise filter for k nearest neighbor
【24h】

A self-training method based on density peaks and an extended parameter-free local noise filter for k nearest neighbor

机译:基于密度峰值和扩展的无参数局部噪声滤波器的k个最近邻居的自训练方法

获取原文
获取原文并翻译 | 示例

摘要

Self-training method is one of the relatively successful methodologies of semi-supervised classification. It can exploit both labeled data and unlabeled data to train a satisfactory supervised classifier. Mislabeling is one of the largest challenges in the self-training method and the most common technique for removing mislabeled samples is the local noise filter. However, existing local noise filters used in self-training methods confront following technical defects: parameter dependence and using only labeled data to remove mislabeled samples. To address these shortcomings, this paper proposes a novel self-training method based on density peaks and an extended parameter-free local noise filter (STDPNF). In STDPNF, the self-training method based on density peaks is redesigned to be more suitable for combination with local noise filters. Moreover, a new local noise filter based on natural neighbors is proposed to filter out mislabeled instances. Compared with existing local noise filters used in self-training methods, the one in STDPNF is parameter-free and can remove mislabeled samples by exploiting the information of both labeled data and unlabeled data. We focus on k nearest neighbor as a base classifier. In experiments, we verify the efficiency of STDPNF in improving the performance of the base classifier of k nearest neighbor and the advantage of STDPNF in having the ability to remove mislabeled instances efficiently even when labeled data are not sufficient. (C) 2019 Published by Elsevier B.V.
机译:自我训练方法是相对成功的半监督分类方法之一。它可以利用标记的数据和未标记的数据来训练令人满意的监督分类器。贴错标签是自训练方法中最大的挑战之一,用于去除贴错标签的样本的最常见技术是局部噪声滤波器。但是,自训练方法中使用的现有本地噪声滤波器面临以下技术缺陷:参数依赖性以及仅使用标记数据来删除标记错误的样本。为了解决这些缺点,本文提出了一种基于密度峰值和扩展的无参数局部噪声滤波器(STDPNF)的新型自训练方法。在STDPNF中,重新设计了基于密度峰值的自训练方法,使其更适合与本地噪声滤波器组合。此外,提出了一种基于自然邻居的新的局部噪声滤波器,以滤除标签错误的实例。与自训练方法中使用的现有本地噪声滤波器相比,STDPNF中的滤波器没有参数,并且可以通过利用标记数据和未标记数据的信息来去除标记错误的样本。我们将k最近邻居作为基本分类器。在实验中,我们验证了STDPNF在改善k个最近邻的基本分类器性能方面的效率,以及STDPNF的优势,即使在标记数据不足的情况下,它也能够有效删除标记错误的实例。 (C)2019由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号