首页> 外文期刊>Concurrency and computation: practice and experience >Density peaks clustering based on k-nearest neighbors sharing
【24h】

Density peaks clustering based on k-nearest neighbors sharing

机译:基于K-CORMATE邻居共享的密度峰集群

获取原文
获取原文并翻译 | 示例

摘要

The density peaks clustering (DPC) algorithm is a density-based clustering algorithm. Its density peak depends on the density-distance model to determine it. The definition of local density for samples used in DPC algorithm only considers distance between samples, while the environments of samples are neglected. This leads to the result that DPC algorithm performs poorly on complex data sets with large difference in density, flow pattern or cross-winding. In the meantime, the fault tolerance of allocation strategy for samples is relatively poor. Based on the findings, this article proposes a density peaks clustering based on k-nearest neighbors sharing (DPC-KNNS) algorithm, which uses the similarity between shared neighbors and natural neighbors to define the local density of samples and the allocation. Comparison between theoretical analysis and experiments on various synthetic and real data reveal that the algorithm proposed in this article can discover the cluster center of complex data sets with large difference in density, flow pattern or cross-winding. It can also provide effective clustering.
机译:密度峰聚类(DPC)算法是一种基于密度的聚类算法。其密度峰取决于密度距离模型以确定它。 DPC算法中使用的样本的局部密度的定义仅考虑样品之间的距离,而样品的环境被忽略。这导致结果,DPC算法在复杂数据集上表现不佳,密度,流量模式或跨绕组的差异很大。同时,样本的分配策略的容错相对较差。基于调查结果,本文提出了基于K-Collect邻居共享(DPC-KNNS)算法的密度峰集群,其利用共享邻居和自然邻居之间的相似性来定义样本和分配的局部密度。各种合成和实际数据的理论分析与实验的比较揭示了本文提出的算法可以发现复杂数据集的集群中心,密度,流动模式或跨绕组差异很大。它还可以提供有效的聚类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号