首页> 外文期刊>Knowledge-Based Systems >Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals
【24h】

Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals

机译:使用新型十六进制局部模式和ECG信号的多级小波变换进行自动心律失常检测

获取原文
获取原文并翻译 | 示例

摘要

Electrocardiography (ECG) is widely used for arrhythmia detection nowadays. The machine learning methods with signal processing algorithms have been used for automated diagnosis of cardiac health using ECG signals. In this article, discrete wavelet transform (DWT) coupled with novel 1-dimensional hexadecimal local pattern (1D-HLP) technique are employed for automated detection of arrhythmia detection. The ECG signals of 10 s duration are subjected to DWT to decompose up to five levels. The 1D-HLP extracts 512 dimensional features from each level of the five levels of low pass filter. Then, these extracted features are concatenated to obtain 512 x 6 = 3072 dimensional feature set. These fused features are subjected to neighborhood component analysis (NCA) feature reduction technique to obtain 64, 128 and 256 features. Finally, these features are subjected to 1 nearest neighborhood (1NN) classifier for classification with 4 distance metrics namely city block, Euclidean, spearman and cosine. We have obtained a classification accuracy of 95.0% in classifying 17 arrhythmia classes using MIT-BIH Arrhythmia ECG dataset. Our results show that the proposed method is more superior than other already reported classical ensemble learning and deep learning methods for arrhythmia detection using ECG signals. (C) 2019 Elsevier B.V. All rights reserved.
机译:如今,心电图(ECG)被广泛用于心律失常检测。具有信号处理算法的机器学习方法已用于使用ECG信号自动诊断心脏健康。在本文中,将离散小波变换(DWT)与新颖的一维十六进制局部模式(1D-HLP)技术结合起来用于自动检测心律失常。持续10 s的ECG信号经过DWT分解,最多可分解为五个电平。 1D-HLP从五个级别的低通滤波器的每个级别中提取512维特征。然后,将这些提取的特征进行级联以获得512 x 6 = 3072维特征集。对这些融合的特征进行邻域分量分析(NCA)特征缩减技术,以获得64、128和256个特征。最后,对这些要素进行1个最近邻(1NN)分类器分类,以4种距离度量标准进行分类,即街区,欧几里得,矛兵和余弦。在使用MIT-BIH心律失常ECG数据集对17种心律失常类别进行分类时,我们获得了95.0%的分类精度。我们的结果表明,对于使用心电图信号进行心律失常检测的方法,该方法优于其他已报道的经典合奏学习和深度学习方法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号