首页> 外文期刊>Knowledge-Based Systems >Bacterial foraging optimization algorithm in robotic cells with sequence-dependent setup times
【24h】

Bacterial foraging optimization algorithm in robotic cells with sequence-dependent setup times

机译:序列依赖建立时间的机器人细胞细菌觅食优化算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an improved discrete bacterial foraging algorithm to determine the optimal sequence of parts and robot moves in order to minimize the cycle time for the 2-machine robotic cell scheduling problem with sequence-dependent setup times. We present a method to convert the solutions from continuous to discrete form. In addition, two neighborhood search techniques are employed to updating the positions of each bacterium during chemotaxis and elimination-dispersal operations in order to accelerate the search procedure and to improve the solution. Moreover, a multi-objective optimization algorithm based on NSGA-II combined with the response surface methodology and the desirability technique is applied to tune the parameters as well as to enhance the convergence speed of the proposed algorithm. Finally, a design of experiment based on central composite design is used to determine the optimal settings of the operating parameters of the proposed algorithm. The results of the computational experimentation with a large number of randomly generated test problems demonstrate that the proposed method is relatively more effective and efficient than the state-of-the-art algorithms in minimizing the cycle time in the robotic cell scheduling. (C) 2019 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种改进的离散细菌觅食算法,以确定零件和机器人移动的最佳顺序,以最小化具有序列依赖设置时间的两机机器人细胞调度问题的周期时间。我们提出了一种将解决方案从连续形式转换为离散形式的方法。另外,在趋化和消除-分散操作期间,采用两种邻域搜索技术来更新每种细菌的位置,以加速搜索过程并改善解决方案。此外,基于NSGA-II的多目标优化算法结合响应面方法和期望技术被应用于参数的调整,并提高了算法的收敛速度。最后,使用基于中央复合设计的实验设计来确定所提出算法的运行参数的最佳设置。大量随机产生的测试问题的计算实验结果表明,与最小化机器人细胞调度的周期时间相比,所提出的方法相对于最新算法更为有效。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号