首页> 外文期刊>Knowledge-Based Systems >Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection
【24h】

Intelligent fault diagnosis of rotating machinery using improved multiscale dispersion entropy and mRMR feature selection

机译:改进的多尺度色散熵和mRMR特征选择在旋转机械智能故障诊断中的应用

获取原文
获取原文并翻译 | 示例

摘要

Intelligent fault diagnosis of rotating machinery is essentially a pattern recognition problem. Meanwhile, effective feature extraction from the raw vibration signal is an important procedure for timely detection of mechanical health status and the assessment of fault recognition results. Therefore, to efficiently extract fault feature information and improve fault diagnosis accuracy, a novel fault diagnosis technique based on improved multiscale dispersion entropy (IMDE) and max-relevance min-redundancy (mRMR) is proposed in this paper. Firstly, the IMDE method is developed to capture multi-scale fault features from the collected original vibration signal, which can overcome the deficiencies of traditional multiscale entropy and improve the stability of the recently presented multiscale dispersion entropy (MDE). Then, the mRMR algorithm is utilized to select automatically the sensitive features from the candidate multi-scale features without any prior knowledge. Finally, the sensitive feature vector set after normalization treatment is inputted into the extreme learning machine (ELM) classifier to train the intelligent diagnosis model and provide fault diagnosis results. The validity of our proposed method is assessed through two experimental examples. The experimental results show that our proposed method works efficiently for identification of different fault conditions of mechanical components including rolling bearing and gearbox. Moreover, our proposed method gives better diagnosis results as compared to some existing approaches (e.g. MSE and MPE) when being utilized for fault condition classification. This research provides a new perspective for fault information extraction and fault classification of rotating machinery.
机译:旋转机械的智能故障诊断本质上是一种模式识别问题。同时,有效地从原始振动信号中提取特征是及时检测机械健康状况和评估故障识别结果的重要过程。因此,为了有效地提取故障特征信息并提高故障诊断的准确性,提出了一种基于改进的多尺度色散熵(IMDE)和最大相关最小冗余度(mRMR)的故障诊断技术。首先,开发了IMDE方法以从收集的原始振动信号中捕获多尺度故障特征,它可以克服传统多尺度熵的不足,并提高最近提出的多尺度弥散熵(MDE)的稳定性。然后,在没有任何先验知识的情况下,利用mRMR算法自动从候选多尺度特征中选择敏感特征。最后,将经过标准化处理后设置的敏感特征向量输入到极限学习机(ELM)分类器中,以训练智能诊断模型并提供故障诊断结果。我们通过两个实验示例评估了我们提出的方法的有效性。实验结果表明,本文提出的方法可以有效地识别包括滚动轴承和变速箱在内的机械零件的不同故障状况。此外,与用于故障状态分类的某些现有方法(例如MSE和MPE)相比,我们提出的方法可提供更好的诊断结果。该研究为旋转机械故障信息的提取和故障分类提供了新的视角。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号