首页> 外文期刊>Knowledge-Based Systems >Localized Multiple Kernel learning for Anomaly Detection: One-class Classification
【24h】

Localized Multiple Kernel learning for Anomaly Detection: One-class Classification

机译:用于异常检测的局部多核学习:一类分类

获取原文
获取原文并翻译 | 示例

摘要

Multi-kernel learning has been well explored in the recent past and has exhibited promising outcomes for multi-class classification and regression tasks. In this paper, we present a multiple kernel learning approach for the One-class Classification (OCC) task and employ it for anomaly detection. Recently, the basic multi-kernel approach has been proposed to solve the OCC problem, which is simply a convex combination of different kernels with equal weights. This paper proposes a Localized Multiple Kernel learning approach for Anomaly Detection (LMKAD) using OCC, where the weight for each kernel is assigned locally. Proposed LMKAD approach adapts the weight for each kernel using a gating function. The parameters of the gating function and one-class classifier are optimized simultaneously through a two-step optimization process. We present the empirical results of the performance of LMKAD on 25 benchmark datasets from various disciplines. This performance is evaluated against existing Multi Kernel Anomaly Detection (MKAD) algorithm, and four other existing kernel-based one-class classifiers to showcase the credibility of our approach. LMKAD achieves significantly better Gmean scores while using a lesser number of support vectors compared to MKAD. Friedman test is also performed to verify the statistical significance of the results claimed in this paper. (C) 2018 Elsevier B.V. All rights reserved.
机译:最近,对多核学习进行了很好的探索,并且在多类分类和回归任务中显示出了令人鼓舞的成果。在本文中,我们提出了一种用于一类分类(OCC)任务的多核学习方法,并将其用于异常检测。近来,已经提出了基本的多核方法来解决OCC问题,该方法只是具有相等权重的不同核的凸组合。本文提出了一种使用OCC的本地化多内核异常检测(LMKAD)学习方法,其中每个内核的权重在本地分配。提议的LMKAD方法使用门控功能调整每个内核的权重。门控功能和一类分类器的参数通过两步优化过程同时进行优化。我们介绍了来自不同学科的25个基准数据集上LMKAD的性能的经验结果。该性能是根据现有的多内核异常检测(MKAD)算法以及其他四个现有的基于内核的一类分类器进行评估的,以展示我们方法的可靠性。与MKAD相比,使用更少数量的支持向量,LMKAD可以获得更好的Gmean评分。还进行弗里德曼检验以验证本文所声称结果的统计意义。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号