首页> 外文期刊>Knowledge-Based Systems >Multistep-ahead forecasting of chlorophyll a using a wavelet nonlinear autoregressive network
【24h】

Multistep-ahead forecasting of chlorophyll a using a wavelet nonlinear autoregressive network

机译:基于小波非线性自回归网络的叶绿素a多步预测

获取原文
获取原文并翻译 | 示例

摘要

Multistep-ahead forecasting is essential to many practical problems, such as the early warning of disasters. However, existing studies mainly focus on current-time or one-step-ahead prediction since forecasting multiple steps continuously presents difficulties, such as accumulated errors and long-term time series modeling. In this paper, an effective multistep-ahead forecasting model wavelet nonlinear autoregressive network (WNARNet), which integrates the wavelet transform and a nonlinear autoregressive neural network (NAR), is proposed for the forecast of chlorophyll a concentration. The wavelet transform decreases the accumulative errors by dividing complicated time series into simpler ones. Simultaneously, the NAR maintains the dependencies between the time series. The buoy monitoring data of the Wenzhou coastal area obtained in 2014-2015 is used to verify the feasibility and effectiveness of WNARNet. The model performs well in predicting the dynamics of chlorophyll a and it is able to predict different horizons flexibly and accurately without training new models. Furthermore, experimental results demonstrate that WNARNet significantly outperforms other benchmark methods of multistep-ahead forecasting. When forecasting 20 steps ahead, the r of WNARNet is 0.08 higher and the RMSE is 0.04 lower than the values of the benchmark models. Therefore, the newly proposed approach represents a promising and effective method for the future prediction of chlorophyll a.
机译:对于许多实际问题,例如灾难的早期预警,多步提前预报是必不可少的。但是,现有的研究主要集中在当前时间或提前一步的预测上,因为预测多步连续不断地会带来困难,例如累积误差和长期时间序列建模。本文提出了一种有效的多步预测模型小波非线性自回归网络(WNARNet),该模型将小波变换和非线性自回归神经网络(NAR)相集成,用于叶绿素a浓度的预测。小波变换通过将复杂的时间序列划分为较简单的时间序列来减少累积误差。同时,NAR维护时间序列之间的依赖性。利用2014-2015年获得的温州沿海地区浮标监测数据,验证了WNARNet的可行性和有效性。该模型在预测叶绿素a的动力学方面表现良好,并且能够在不训练新模型的情况下灵活而准确地预测不同的视野。此外,实验结果表明,WNARNet大大优于其他基准的多步预测方法。预测未来20步时,WNARNet的r比基准模型的值高0.08,RMSE则低0.04。因此,新提出的方法代表了未来对叶绿素a预测的有希望和有效的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号