首页> 外文期刊>Knowledge-Based Systems >SL method for computing a near-optimal solution using linear and non-linear programming in cost-based hypothetical reasoning
【24h】

SL method for computing a near-optimal solution using linear and non-linear programming in cost-based hypothetical reasoning

机译:基于成本的假设推理中使用线性和非线性规划计算近似最优解的SL方法

获取原文
获取原文并翻译 | 示例

摘要

Hypothetical reasoning is an important framework for knowledge-based systems, however, its inference time grows exponentially with respect to problem size. In this paper, we preset an understandable efficient method called slide-down and lift-up (SL) method which uses a linear programming technique for determining an initial search point and a non-linear programming technique for efficiently finding a near- optimal 0-1 solution. To escape from trapping into local optima, we have developed a new local handler, which systematically fixes a variable to a local consistent value. Since the behaviour of the SL method is illustrated visually, the simple inference mechanism of the method can be easily understood.
机译:假设推理是基于知识的系统的重要框架,但是,其推理时间相对于问题的大小呈指数增长。在本文中,我们预设了一种易于理解的有效方法,称为滑降法(SL),该方法使用线性规划技术来确定初始搜索点,并使用非线性规划技术来有效地找到接近最佳的0- 1解决方案。为了避免陷入局部最优状态,我们开发了一个新的局部处理程序,该系统将变量系统地固定为局部一致值。由于从视觉上说明了SL方法的行为,因此可以轻松理解该方法的简单推断机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号