首页> 外文期刊>Knowledge-Based Systems >Incorporating a non-additive decision making method into multi-layer neural networks and its application to financial distress analysis
【24h】

Incorporating a non-additive decision making method into multi-layer neural networks and its application to financial distress analysis

机译:将非累加决策方法纳入多层神经网络及其在财务困境分析中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel multi-layer perceptron using a non-additive decision making method and applies this model to the financial distress analysis, which is an important classification problem for a business, and the multi-layer perceptron has played a significant role in financial distress analysis. Traditionally, an activation function of an output neuron performs an additive method, namely the weighted sum method. Since the assumption of additivity among individual variables may not be reasonable, this paper uses a non-additive method, Choquet fuzzy integral, the fuzzy integral, to replace the weighted sum. In order to determine appropriate parameter specifications in the proposed model, a genetic algorithm is designed by considering the maximization of the number of correctly classified training patterns and the minimization of the training errors. The sample data obtained from Moody's Industrial Manuals are employed to examine the classification ability of the proposed model. The results demonstrate that the proposed model performs well in comparison with the traditional multi-layer perceptron and some multivariate techniques.
机译:本文提出了一种采用非加性决策方法的新型多层感知器,并将该模型应用于财务困境分析中,这是企业的重要分类问题,而多层感知器在财务中发挥了重要作用遇险分析。传统上,输出神经元的激活函数执行加法,即加权和法。由于各个变量之间的可加性假设可能不合理,因此本文使用非加性方法Choquet模糊积分(模糊积分)来代替加权和。为了在提出的模型中确定合适的参数规格,通过考虑正确分类的训练模式的数量的最大化和训练误差的最小化来设计遗传算法。从穆迪工业手册中获得的样本数据用于检查所提出模型的分类能力。结果表明,与传统的多层感知器和一些多元技术相比,该模型具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号