首页> 外文期刊>Knowledge-Based Systems >Financial distress prediction in banks using Group Method of Data Handling neural network, counter propagation neural network and fuzzy ARTMAP
【24h】

Financial distress prediction in banks using Group Method of Data Handling neural network, counter propagation neural network and fuzzy ARTMAP

机译:使用数据处理神经网络,反向传播神经网络和模糊ARTMAP的分组方法预测银行财务困境

获取原文
获取原文并翻译 | 示例

摘要

This paper presents three hitherto unused neural network architectures for bankruptcy prediction in banks. These networks are Group Method of Data Handling (GMDH), Counter Propagation Neural Network (CPNN) and fuzzy Adaptive Resonance Theory Map (fuzzy ARTMAP). Efficacy of each of these techniques is tested by using four different datasets pertaining to Spanish banks, Turkish banks, UK banks and US banks. Further t-statistic, f-statistic and GMDH are used for feature selection purpose and the features so selected are fed as input to GMDH, CPNN and fuzzy ARTMAP for classification purpose. In each of these cases, top five features are selected in the case of Spanish dataset and top seven features are selected in the case of Turkish and UK datasets. It is observed that the features selected by t-statistic and /-statistic are identical in all datasets. Further, there is a good overlap in the features selected by t-statistic and GMDH. The performance of these hybrids is compared with that of GMDH, CPNN and fuzzy ARTMAP in their stand-alone mode without feature selection. Ten-fold cross validation is performed throughout the study. Results indicate that the GMDH outperformed all the techniques with or without feature selection. Furthermore, the results are much better than those reported in previous studies on the same datasets in terms of average accuracy, average sensitivity and average specificity.
机译:本文介绍了三种迄今未使用的神经网络架构,用于银行中的破产预测。这些网络是分组数据处理方法(GMDH),对向传播神经网络(CPNN)和模糊自适应共振理论图(fuzzy ARTMAP)。通过使用与西班牙银行,土耳其银行,英国银行和美国银行有关的四个不同的数据集,测试了每种技术的有效性。进一步的t统计量,f统计量和GMDH用于特征选择,并将如此选择的特征作为输入提供给GMDH,CPNN和模糊ARTMAP,以进行分类。在每种情况下,对于西班牙语数据集,选择前五个特征,对于土耳其语和英国数据集,选择前七个特征。可以看出,在所有数据集中,通过t统计和/统计选择的特征都是相同的。此外,通过t统计量和GMDH选择的特征存在良好的重叠。在没有特征选择的情况下,将这些混合动力的性能与GMDH,CPNN和模糊ARTMAP的性能进行了比较。在整个研究过程中进行十次交叉验证。结果表明,无论有无特征选择,GMDH的性能均优于所有技术。此外,就平均准确度,平均灵敏度和平均特异性而言,结果比以前在相同数据集上的研究报告的结果要好得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号