首页> 外文期刊>Knowledge-Based Systems >Concept discovery on relational databases: New techniques for search space pruning and rule quality improvement
【24h】

Concept discovery on relational databases: New techniques for search space pruning and rule quality improvement

机译:关系数据库的概念发现:用于搜索空间修剪和规则质量改进的新技术

获取原文
获取原文并翻译 | 示例

摘要

Multi-relational data mining has become popular due to the limitations of propositional problem definition in structured domains and the tendency of storing data in relational databases. Several relational knowledge discovery systems have been developed employing various search strategies, heuristics, language pattern limitations and hypothesis evaluation criteria, in order to cope with intractably large search space and to be able to generate high-quality patterns. In this work, we introduce an ILP-based concept discovery framework named Concept Rule Induction System (CRIS) which includes new approaches for search space pruning and new features, such as defining aggregate predicates and handling numeric attributes, for rule quality improvement. In CRIS, all target instances are considered together, which leads to construction of more descriptive rules for the concept. This property also makes it possible to use aggregate predicates more accurately in concept rule construction. Moreover, it facilitates construction of transitive rules. A set of experiments is conducted in order to evaluate the performance of proposed method in terms of accuracy and coverage.
机译:由于结构域中命题定义的局限性以及将数据存储在关系数据库中的趋势,多关系数据挖掘已变得很流行。已经开发了几种采用各种搜索策略,启发式,语言模式限制和假设评估标准的关系知识发现系统,以应对难以置信的大搜索空间并能够生成高质量的模式。在这项工作中,我们介绍一个名为概念规则归纳系统(CRIS)的基于ILP的概念发现框架,其中包括用于搜索空间修剪的新方法和新功能,例如定义集合谓词和处理数字属性,以提高规则质量。在CRIS中,将所有目标实例一起考虑,从而为该概念构建了更具描述性的规则。此属性还可以在概念规则构造中更准确地使用聚合谓词。而且,它有助于构造及物性规则。为了评估所提出方法的准确性和覆盖范围,进行了一系列实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号