首页> 外文期刊>Knowledge-Based Systems >Privacy preserving data mining: A noise addition framework using a novel clustering technique
【24h】

Privacy preserving data mining: A noise addition framework using a novel clustering technique

机译:隐私保护数据挖掘:使用新型聚类技术的噪声添加框架

获取原文
获取原文并翻译 | 示例

摘要

During the whole process of data mining (from data collection to knowledge discovery) various sensitive data get exposed to several parties including data collectors, cleaners, preprocessors, miners and decision makers. The exposure of sensitive data can potentially lead to breach of individual privacy. Therefore, many privacy preserving techniques have been proposed recently. In this paper we present a framework that uses a few novel noise addition techniques for protecting individual privacy while maintaining a high data quality. We add noise to all attributes, both numerical and categorical. We present a novel technique for clustering categorical values and use it for noise addition purpose. A security analysis is also presented for measuring the security level of a data set.
机译:在数据挖掘的整个过程中(从数据收集到知识发现),各种敏感数据会暴露给包括数据收集者,清理者,预处理者,矿工和决策者在内的多个方。暴露敏感数据可能会导致违反个人隐私。因此,最近已经提出了许多隐私保护技术。在本文中,我们提出了一个框架,该框架使用一些新颖的噪声添加技术来保护个人隐私,同时保持较高的数据质量。我们将噪声添加到所有数字和分类属性中。我们提出了一种聚类分类值的新技术,并将其用于噪声相加目的。还提供了用于分析数据集安全级别的安全性分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号