首页> 外文期刊>Knowledge-Based Systems >Forecasting stock indices using radial basis function neural networks optimizedby artificial fish swarm algorithm
【24h】

Forecasting stock indices using radial basis function neural networks optimizedby artificial fish swarm algorithm

机译:人工鱼群算法优化的径向基函数神经网络预测股指

获取原文
获取原文并翻译 | 示例

摘要

Stock index forecasting is a hot issue in the financial arena. As the movements of stock indices are nonlinear and subject to many internal and external factors, they pose a great challenge to researchers who try to predict them. In this paper, we select a radial basis function neural network (RBFNN) to train data and forecast the stock indices of the Shanghai Stock Exchange. We introduce the artificial fish swarm algorithm (AFSA) to optimize RBF. To increase forecasting efficiency, a K-means clustering algorithm is optimized by AFSA in the learning process of RBF. To verify the usefulness of our algorithm, we compared the forecasting results of RBF optimized by AFSA, genetic algorithms (GA) and particle swarm optimization (PSO), as well as forecasting results of ARIMA, BP and support vector machine (SVM). Our experiment indicates that RBF optimized by AFSA is an easy-to-use algorithm with considerable accuracy. Of all the combinations we tried in this paper, BIAS6 + MA5 + ASY4 was the optimum group with the least errors.
机译:股指预测是金融领域的热点问题。由于股指的变动是非线性的,并且受许多内部和外部因素的影响,它们对试图进行预测的研究人员提出了巨大的挑战。在本文中,我们选择一个径向基函数神经网络(RBFNN)来训练数据并预测上海证券交易所的股票指数。我们引入了人工鱼群算法(AFSA)来优化RBF。为了提高预测效率,AFSA在RBF的学习过程中对K-means聚类算法进行了优化。为了验证我们算法的有效性,我们比较了由AFSA,遗传算法(GA)和粒子群优化(PSO)优化的RBF的预测结果,以及ARIMA,BP和支持向量机(SVM)的预测结果。我们的实验表明,通过AFSA优化的RBF是一种易于使用的算法,具有很高的准确性。在本文尝试的所有组合中,BIAS6 + MA5 + ASY4是误差最小的最佳组。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号