首页> 外文期刊>Knowledge-Based Systems >Recognizing and regulating e-learners' emotions based on interactive Chinese texts in e-learning systems
【24h】

Recognizing and regulating e-learners' emotions based on interactive Chinese texts in e-learning systems

机译:在电子学习系统中基于交互式中文文本识别和调节电子学习者的情绪

获取原文
获取原文并翻译 | 示例

摘要

Emotional illiteracy exists in current e-learning environment, which will decay learning enthusiasm and productivity, and now gets more attentions in recent researches. Inspired by affective computing and active listening strategy, in this paper, a research and application framework of recognizing emotion based on textual interaction is presented first. Second, an emotion category model for e-learners is defined. Third, many Chinese metaphors are abstracted from the corpus according to the sentence semantics and syntax. Fourth, as the strategy of active learning, topic detection is used to detect the first turn in dialogs and recognize the type of emotion in the turn, which is different from the traditional emotion recognition approaches that try to classify every turn into an emotion category. Fifth, compared with Support Vector Machines (SVM), Naive Bayes, LogitBoost, Bagging, MultiClass Classifier, RBFnetwork, J48 algorithms and their corresponding cost-sensitive approaches. Random Forest and its corresponding cost-sensitive approaches achieve better results in our initial experiment of classifying the e-learners' emotions. Finally, a case-based reasoning for emotion regulation instance recommendation is proposed to guide the listener to regulate the negative emotion of a speaker, in which a weighted sum method of Chinese sentence similarity computation is adopted. The experimental result shows that the ratio of effective cases is 68%.
机译:当前的电子学习环境中存在情感文盲,这会削弱学习的积极性和生产力,并在最近的研究中得到越来越多的关注。在情感计算和主动聆听策略的启发下,本文首先提出了一种基于文本交互的情感识别研究与应用框架。其次,定义了针对电子学习者的情感类别模型。第三,根据句子的语义和句法从语料库中提取出许多汉语隐喻。第四,作为主动学习的策略,主题检测用于检测对话中的第一个回合并识别回合中的情感类型,这与尝试将每个回合归类为情感类别的传统情感识别方法不同。第五,与支持向量机(SVM),朴素贝叶斯,LogitBoost,Bagging,MultiClass分类器,RBFnetwork,J48算法及其相应的成本敏感方法相比。在我们对电子学习者情绪进行分类的初始实验中,Random Forest及其相应的成本敏感方法取得了更好的结果。最后,提出了一种基于案例的情绪调节实例推荐推理方法,以指导听众调节说话人的负面情绪,并采用加权相似度的汉语句子相似度计算方法。实验结果表明,有效病例率为68%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号