首页> 外文期刊>Knowledge-Based Systems >Gravitational fixed radius nearest neighbor for imbalanced problem
【24h】

Gravitational fixed radius nearest neighbor for imbalanced problem

机译:引力固定半径最近的邻居解决不平衡问题

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel learning model that introduces the calculation of the pairwise gravitation of the selected patterns into the classical fixed radius nearest neighbor method, in order to overcome the drawback of the original nearest neighbor rule when dealing with imbalanced data. The traditional k nearest neighbor rule is considered to lose power on imbalanced datasets because the final decision might be dominated by the patterns from negative classes in spite of the distance measurements. Differently from the existing modified nearest neighbor learning model, the proposed method named GFRNN has a simple structure and thus becomes easy to work. Moreover, all parameters of GFRNN do not need initializing or coordinating during the whole learning procedure. In practice, GFRNN first selects patterns as candidates out of the training set under the fixed radius nearest neighbor rule, and then introduces the metric based on the modified law of gravitation in the physical world to measure the distance between the query pattern and each candidate. Finally, GFRNN makes the decision based on the sum of all the corresponding gravitational forces from the candidates on the query pattern. The experimental comparison validates both the effectiveness and the efficiency of GFRNN on forty imbalanced datasets, comparing to nine typical methods. As a conclusion, the contribution of this paper is constructing a new simple nearest neighbor architecture to deal with imbalanced classification effectively without any manually parameter coordination, and further expanding the family of the nearest neighbor based rules. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文提出了一种新颖的学习模型,该模型将选定模式的成对引力计算引入经典的固定半径最近邻法中,以克服处理不平衡数据时原始最近邻法则的缺点。传统的k最近邻规则被认为会失去不平衡数据集的能力,因为尽管有距离测量,但最终决策仍可能受到来自负类的模式的支配。与现有的改进的最近邻学习模型不同,提出的名为GFRNN的方法具有简单的结构,因此易于工作。此外,在整个学习过程中,GFRNN的所有参数都不需要初始化或协调。实际上,GFRNN首先根据固定半径最近邻规则从训练集中选择模式作为候选,然后根据物理世界中经修改的引力定律引入度量,以测量查询模式与每个候选之间的距离。最后,GFRNN根据查询模式上来自候选的所有相应重力的总和做出决策。与九种典型方法相比,实验比较验证了GFRNN在40个不平衡数据集上的有效性和效率。结论是,本文的贡献在于构建了一种新的简单的最近邻体系结构,可以有效地处理不平衡分类,而无需任何手动参数协调,并进一步扩展了基于最近邻的规则族。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号