首页> 外文期刊>Knowledge-Based Systems >Pornographic images recognition based on spatial pyramid partition and multi-instance ensemble learning
【24h】

Pornographic images recognition based on spatial pyramid partition and multi-instance ensemble learning

机译:基于空间金字塔分割和多实例集成学习的色情图像识别

获取原文
获取原文并翻译 | 示例

摘要

For tackling the problem of pornographic image recognition, a novel multi-instance learning (MIL) algorithm is proposed by using extreme learning machine (ELM) and classifiers ensemble. Firstly, a spatial pyramid partition-based (SPP) multi-instance modeling technique has been deployed to transform the pornographic images recognition problem into a typical MIL problem. The method has deployed a bag corresponding to an image and an instance corresponding to each partitioned sub-block described by low-level visual features (i.e. color, texture and shape). Secondly, a collection of visual word (VW) has been generated by using hierarchical k-mean clustering method, and then based on the fuzzy membership function between instance and VW, a fuzzy histogram fusion-based metadata Calculation method has been proposed to convert each bag to a single sample, which allows the MIL problem to be solved directly by a standard single instance learning (SIL) machine. Finally, by using ELM, a group of base classifiers with different number of hidden nodes have been constructed, and their weights bas been dynamically determined by using performance weighting rule. Therefore, the strategy of classifiers ensemble is used to improve the overall adaptability of proposed ELMCE-MIL algorithm. Experimental results have shown that the method is robust, and its performance is superior to other similar algorithms. (C) 2015 Elsevier B.V. All rights reserved.
机译:为了解决色情图像识别的问题,提出了一种利用极限学习机和分类器集成的新型多实例学习算法。首先,已经部署了基于空间金字塔分区(SPP)的多实例建模技术,将色情图像识别问题转换为典型的MIL问题。该方法已经部署了与图像相对应的袋子以及与由低级视觉特征(即颜色,纹理和形状)描述的每个分区子块相对应的实例。其次,采用层次k均值聚类的方法生成了视觉词集合,然后基于实例与虚拟词之间的模糊隶属度函数,提出了一种基于模糊直方图融合的元数据计算方法。袋装到单个样本,这可以通过标准的单实例学习(SIL)机器直接解决MIL问题。最后,通过使用ELM,构造了具有不同隐藏节点数的一组基础分类器,并使用性能加权规则动态确定了它们的权重。因此,采用分类器集成策略来提高提出的ELMCE-MIL算法的整体适应性。实验结果表明,该方法是鲁棒的,其性能优于其他类似算法。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2015年第8期|214-223|共10页
  • 作者单位

    Xian Univ Posts & Telecommun, Sch Telecommun & Informat Engn, Xian 710121, Peoples R China|Minist Publ Secur, Key Lab Elect Informat Applicat Technol Scene Inv, Xian 710121, Peoples R China;

    Xian Univ Posts & Telecommun, Sch Telecommun & Informat Engn, Xian 710121, Peoples R China|Minist Publ Secur, Key Lab Elect Informat Applicat Technol Scene Inv, Xian 710121, Peoples R China;

    Univ Huddersfield, Sch Comp & Engn, Comp Graph Imaging & Vis CGIV Res Grp, Huddersfield HD1 3DH, W Yorkshire, England;

    Xian Univ Posts & Telecommun, Sch Telecommun & Informat Engn, Xian 710121, Peoples R China|Minist Publ Secur, Key Lab Elect Informat Applicat Technol Scene Inv, Xian 710121, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-instance learning; Pornographic images recognition; Extreme learning machine;

    机译:多实例学习;色情图像识别;极限学习机;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号