首页> 外文期刊>Knowledge-Based Systems >Finding rough set reducts with fish swarm algorithm
【24h】

Finding rough set reducts with fish swarm algorithm

机译:用鱼群算法寻找粗糙集约简

获取原文
获取原文并翻译 | 示例

摘要

Rough set theory is one of the effective methods to feature selection which can preserve the characteristics of the original features by deleting redundant information. The main idea of rough set approach to feature selection is to find a globally minimal reduct, the smallest set of features keeping important information of the original set of features. Rough set theory has been used as a dataset preprocessor with much success, but current approaches to feature selection are inadequate for finding a globally minimal reduct. In this paper, we propose a novel rough set based method to feature selection using fish swarm algorithm. The fish swarm algorithm is a new intelligent swarm modeling approach that consists primarily of searching, swarming, and following behaviors. It is attractive for feature selection since fish swarms can discover the best combination of features as they swim within the subset space. In our proposed algorithm, a minimal subset can be located and verified. To show the efficiency of our algorithm, we carry out numerical experiments based on some standard UCI datasets. The results demonstrate that our algorithm can provide an efficient tool for finding a minimal subset of the features without information loss. (C) 2015 Elsevier B.V. All rights reserved.
机译:粗糙集理论是特征选择的有效方法之一,可以通过删除冗余信息来保留原始特征的特征。粗糙集特征选择的主要思想是找到全局最小化约简,最小化的特征集保留原始特征集的重要信息。粗糙集理论已被用作数据集预处理器,并获得了很多成功,但是当前的特征选择方法不足以找到全局最小化约简。在本文中,我们提出了一种新的基于粗糙集的方法来使用鱼群算法进行特征选择。鱼群算法是一种新的智能群建模方法,主要由搜索,群聚和跟随行为组成。这对于特征选择很有吸引力,因为鱼群在子空间中游泳时可以发现特征的最佳组合。在我们提出的算法中,可以定位并验证最小子集。为了展示我们算法的效率,我们基于一些标准的UCI数据集进行了数值实验。结果表明,我们的算法可以为查找特征的最小子集提供有效的工具,而不会造成信息丢失。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号