首页> 外文期刊>Knowledge-Based Systems >Designing granular fuzzy models: A hierarchical approach to fuzzy modeling
【24h】

Designing granular fuzzy models: A hierarchical approach to fuzzy modeling

机译:设计粒状模糊模型:一种层次化的模糊建模方法

获取原文
获取原文并翻译 | 示例

摘要

In this study, we elaborate on a distributed fuzzy modeling and ensuing granular fuzzy modeling. Such modeling is realized in the presence of separate and locally available data while the ensuing fuzzy rule-based models constructed on their basis are regarded as individual sources of knowledge. In virtue of an inherent diversity of these sources (models) and in an attempt to quantify it, a global model being formed at the higher level of hierarchy is becoming more abstract than those at the lower level is referred to as a granular fuzzy model. An essential concept of this class of models is introduced and their enhanced functionality is studied. Furthermore, we show interesting linkages of these models with type-2 fuzzy models studied in the literature. We highlight a number of arguments motivating a need and justifiable relevance of higher type of information granules. A detailed discussion on fuzzy rule-based models exhibiting an interesting aspect of an incremental format of the rules (whose rules capture an incremental description of input-output relationships formed with respect to some simple reference model (say, constant or linear) is presented. The design practice of the models is elaborated on by highlighting in this context the use of augmented fuzzy clustering. The construction of a granular fuzzy model is guided by the principle of justifiable granularity using which we show how granular parameters of the models are formed. The performance of the model is quantified with respect to the two criteria, namely coverage of experimental data and specificity of granular results. Experimental studies are reported for both synthetic and publicly available data sets.
机译:在这项研究中,我们详细阐述了分布式模糊建模和随后的粒状模糊建模。这种建模是在存在单独的本地可用数据的情况下实现的,而在其基础上建立的基于模糊规则的模型被视为知识的单独来源。由于这些源(模型)固有的多样性并试图对其进行量化,因此与较低层相比,在较高层级上形成的全局模型变得更加抽象。介绍了此类模型的基本概念,并研究了其增强的功能。此外,我们展示了这些模型与文献中研究的2型模糊模型之间的有趣联系。我们重点介绍了许多论点,这些论点激发了对更高类型的信息颗粒的需求和合理的相关性。提出了对基于模糊规则的模型的详细讨论,该模型展示了规则的增量格式的有趣方面(其规则捕获了相对于某些简单参考模型(例如恒定或线性)形成的输入-输出关系的增量描述。通过在这种情况下突出使用增强模糊聚类来详细阐述模型的设计实践,基于合理粒度原则指导粒状模糊模型的构建,使用粒状模糊模型说明如何形成模型的粒状参数。模型的性能根据两个标准进行量化,即实验数据的覆盖范围和颗粒结果的特异性,并报告了合成和公开数据集的实验研究。

著录项

  • 来源
    《Knowledge-Based Systems》 |2015年第3期|42-52|共11页
  • 作者单位

    Department of Electrical & Computer Engineering, University of Alberta, Edmonton T6R 2V4 AB, Canada,Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia,Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland;

    Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia;

    Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia;

    Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Granular fuzzy model; Granular Computing; Principle of justifiable granularity; Type-2 fuzzy sets; Hierarchy of models; Local and global models;

    机译:粒度模糊模型粒度计算;合理粒度原则;2型模糊集;模型层次结构;本地和全球模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号