首页> 外文期刊>Knowledge-Based Systems >Fast algorithms to evaluate collaborative filtering recommender systems
【24h】

Fast algorithms to evaluate collaborative filtering recommender systems

机译:快速算法来评估协作过滤推荐系统

获取原文
获取原文并翻译 | 示例

摘要

Before deploying a recommender system, its performance must be measured and understood. So evaluation is an integral part of the process to design and implement recommender systems. In collaborative filtering, there are many metrics for evaluating recommender systems. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are among the most important and representative ones. To calculate MAE/RMSE, predicted ratings are compared with their corresponding true ratings. To predict item ratings, similarities between active users and their candidate neighbors need to be calculated. The complexity for the traditional and naive similarity calculation corresponding to user u and user v is quadratic in the number of items rated by u and v. In this paper, we explore the mathematical regularities underlying the similarity formulas, introduce a novel data structure, and design linear time algorithms to calculate the similarities. Such complexity improvement shortens the evaluation time and will finally contribute to increasing the efficiency of design and development of recommender systems. Experimental results confirm the claim. (C) 2016 Elsevier B.V. All rights reserved.
机译:在部署推荐系统之前,必须先评估和了解其性能。因此,评估是设计和实施推荐系统的过程的组成部分。在协作过滤中,有许多评估推荐系统的指标。平均绝对误差(MAE)和均方根误差(RMSE)是最重要和最具代表性的误差。为了计算MAE / RMSE,将预测收视率与其对应的真实收视率进行比较。为了预测物品等级,需要计算活跃用户与其候选邻居之间的相似度。与用户u和用户v对应的传统相似性计算和朴素相似性计算的复杂度在由u和v评定的项目数量上是二次的。在本文中,我们探索了相似性公式背后的数学规律,介绍了一种新颖的数据结构,以及设计线性时间算法以计算相似度。这种复杂性的改进缩短了评估时间,最终将有助于提高推荐系统的设计和开发效率。实验结果证实了这一主张。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2016年第15期|96-103|共8页
  • 作者单位

    China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China|China Univ Geosci, Hubei Key Lab Intelligent Geoinformat Proc, Wuhan 430074, Peoples R China;

    China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China;

    GraphSQL Inc, Mountain View, CA 94043 USA;

    S China Normal Univ, Sch Comp Sci, Guangzhou 510631, Guangdong, Peoples R China;

    Univ Stavanger, Fac Sci & Technol, N-4036 Stavanger, Norway;

    Oakland Univ, Dept Engn & Comp Sci, Rochester, MI 48309 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Recommender systems; Collaborative filtering; MAE/RMSE; Evaluation;

    机译:推荐系统;协同过滤;MAE / RMSE;评估;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号