首页> 外文期刊>Knowledge-Based Systems >Big social network influence maximization via recursively estimating influence spread
【24h】

Big social network influence maximization via recursively estimating influence spread

机译:通过递归估计影响力传播来最大化社交网络的影响力

获取原文
获取原文并翻译 | 示例

摘要

Influence maximization aims to find a set of highly influential nodes in a social network to maximize the spread of influence. Although the problem has been widely studied, it is still challenging to design algorithms to meet three requirements simultaneously, i.e., fast computation, guaranteed accuracy, and low memory consumption that scales well to a big network. Existing heuristic algorithms are scalable but suffer from unguaranteed accuracy. Greedy algorithms such as CELF [1] are accurate with theoretical guarantee but incur heavy simulation cost in calculating the influence spread. Moreover, static greedy algorithms are accurate and sufficiently fast, but they suffer extensive memory cost. In this paper, we present a new algorithm to enable greedy algorithms to perform well in big social network influence maximization. Our algorithm recursively estimates the influence spread using reachable probabilities from node to node. We provide three strategies that integrate memory cost and computing efficiency. Experiments demonstrate the high accuracy of our influence estimation. The proposed algorithm is more than 500 times faster than the CELF algorithm on four real world data sets. (C) 2016 Elsevier B.V. All rights reserved.
机译:影响力最大化的目的是在社交网络中找到一组极有影响力的节点,以最大程度地扩大影响力的传播。尽管已经对该问题进行了广泛研究,但是设计算法以同时满足三个需求仍然是挑战,即快速计算,保证的准确性和低内存消耗(可以很好地扩展到大型网络)。现有的启发式算法是可扩展的,但是具有无法保证的准确性。诸如CELF [1]之类的贪婪算法在理论上可以保证准确性,但是在计算影响范围时却要付出沉重的仿真成本。而且,静态贪婪算法是准确且足够快的,但是它们遭受了巨大的存储成本。在本文中,我们提出了一种新算法,可以使贪心算法在大型社交网络影响力最大化中表现良好。我们的算法使用可到达的概率从节点到节点递归地估计影响扩散。我们提供了三种整合内存成本和计算效率的策略。实验表明,我们的影响力估算具有很高的准确性。在四个真实数据集上,该算法比CELF算法快500倍以上。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2016年第1期|143-154|共12页
  • 作者

    Lu Wei-Xue; Zhou Chuan; Wu Jia;

  • 作者单位

    Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China;

    Chinese Acad Sci, Inst Informat Engn, Beijing 100093, Peoples R China|Univ Chinese Acad Sci, Beijing 100049, Peoples R China;

    Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst QCIS, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Greedy algorithms; Social network; Influence maximization;

    机译:贪婪算法;社交网络;影响力最大化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号