首页> 外文期刊>Intelligent data analysis >Maximizing the spread of positive influence in signed social networks
【24h】

Maximizing the spread of positive influence in signed social networks

机译:最大限度地扩大已签名社交网络中的积极影响力的传播

获取原文
获取原文并翻译 | 示例

摘要

Influence maximization in a social network involves identifying an initial subset of nodes with a pre-defined size in order to begin the information diffusion with the objective of maximizing the influenced nodes. In this study, a sign-aware cascade (SC) model is proposed for modeling the effect of both trust and distrust relationships on activation of nodes with positive or negative opinions towards a product in the signed social networks. It is proved that positive influence maximization is NP-hard in the SC model and influence function is neither monotone nor submodular. For solving this NP-hard problem, a particle swarm optimization (PSO) method is presented which applies the random keys representation technique to convert the continuous search space of the PSO to the discrete search space of this problem. To improve the performance of this PSO method against premature convergence, a re-initialization mechanism for portion of particles with poorer fitness values and a heuristic mutation operator for global best particle are proposed. Experiments establish the effectiveness of the SC in modeling the real-world cascades. In addition, PSO method is compared with the well-known algorithms in the literature on two real-world data sets. The evaluation results demonstrate that the proposed method outperforms the compared algorithms significantly in the SC model.
机译:社交网络中的影响力最大化涉及识别具有预定大小的节点的初始子集,以便开始信息扩散,目的是最大化受影响的节点。在这项研究中,提出了一种识别符号的级联(SC)模型,用于对信任和不信任关系对已签名社交网络中对产品具有正面或负面观点的节点的激活的影响进行建模。证明了在SC模型中正影响最大化是NP-hard的,影响函数既不是单调的也不是子模的。为了解决该NP难题,提出了一种粒子群优化(PSO)方法,该方法应用随机密钥表示技术将PSO的连续搜索空间转换为该问题的离散搜索空间。为了提高此PSO方法针对过早收敛的性能,提出了适用性较差的部分粒子的重新初始化机制和全局最佳粒子的启发式突变算子。实验确定了SC在模拟实际级联中的有效性。此外,在两个实际数据集上,将PSO方法与文献中的著名算法进行了比较。评估结果表明,所提出的方法在SC模型中明显优于比较算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号