首页> 外文期刊>Knowledge-Based Systems >Exploring shapelet transformation for time series classification in decision trees
【24h】

Exploring shapelet transformation for time series classification in decision trees

机译:探索Shapelet变换以进行决策树中的时间序列分类

获取原文
获取原文并翻译 | 示例

摘要

In data mining tasks, time series classification has been widely investigated. Recent studies using non symbolic learning algorithms have reported significant results in terms of classification accuracy. However, in applications related to decision-making processes it is necessary to understand of reasoning used in the classification process. To take this into account, the shapelet primitive has been proposed in the literature as a descriptor of local morphological characteristics. On the other hand, most of the existing work related to shapelets has been dedicated to the development of more effective approaches in terms of time and accuracy, disregarding the need for the classifiers interpretation. In this work, we propose the construction of symbolic models for time series classification using shapelet transformation. Moreover, we develop strategies to improve the representation quality of the shapelet transformation, using feature selection algorithms. We performed experimental evaluations comparing our proposal with the state-of-the-art algorithms present in the time series classification literature. Based upon the experimental results, we argue that the improvement in shapelet representation can contribute to the construction of more interpretable and competitive classifiers in comparison to non-symbolic methods. (C) 2016 Elsevier B.V. All rights reserved.
机译:在数据挖掘任务中,时间序列分类已被广泛研究。最近使用非符号学习算法的研究报告了在分类准确性方面的重要结果。但是,在与决策过程相关的应用程序中,有必要了解分类过程中使用的推理。为了考虑到这一点,在文献中已经提出了小波基元作为局部形态特征的描述。另一方面,与形状成形有关的大多数现有工作都致力于在时间和准确性方面开发更有效的方法,而无需分类器解释。在这项工作中,我们建议使用小波变换构建用于时间序列分类的符号模型。此外,我们开发了使用特征选择算法来提高小波变换的表示质量的策略。我们进行了实验评估,将我们的建议与时间序列分类文献中的最新算法进行了比较。基于实验结果,我们认为与非符号方法相比,小波表示形式的改进可以有助于构建更具解释性和竞争性的分类器。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号