首页> 外文期刊>Knowledge-Based Systems >Feature subset selection based on fuzzy neighborhood rough sets
【24h】

Feature subset selection based on fuzzy neighborhood rough sets

机译:基于模糊邻域粗糙集的特征子集选择

获取原文
获取原文并翻译 | 示例

摘要

Rough set theory has been extensively discussed in machine learning and pattern recognition. It provides us another important theoretical tool for feature selection. In this paper, we construct a novel rough set model for feature subset selection. First, we define the fuzzy decision of a sample by using the concept of fuzzy neighborhood. A parameterized fuzzy relation is introduced to characterize fuzzy information granules for analysis of real-valued data. Then, we use the relationship between fuzzy neighborhood and fuzzy decision to construct a new rough set model: fuzzy neighborhood rough set model. Based on this model, the definitions of upper and lower approximation, boundary region and positive region are given, and the effects of parameters on these concepts are discussed. To make the new model tolerate noises in data, we introduce a variable-precision fuzzy neighborhood rough set model. This model can decrease the possibility that a sample is classified into a wrong category. Finally, we define the dependency between fuzzy decision and condition attributes and employ the dependency to evaluate the significance of a candidate feature, using which a greedy feature subset selection algorithm is designed. The proposed algorithm is compared with some classical algorithms. The experiments show that the proposed algorithm gets higher classification performance and the numbers of selected features are relatively small. (C) 2016 Elsevier B.V. All rights reserved.
机译:粗糙集理论已经在机器学习和模式识别中得到了广泛的讨论。它为我们提供了另一个重要的特征选择理论工具。在本文中,我们构建了一个用于特征子集选择的新颖粗糙集模型。首先,我们使用模糊邻域的概念定义样本的模糊决策。引入参数化模糊关系来表征模糊信息颗粒,以分析实值数据。然后,利用模糊邻域与模糊决策之间的关系,构建了一个新的粗糙集模型:模糊邻域粗糙集模型。在此模型的基础上,给出了上下近似,边界区域和正区域的定义,并讨论了参数对这些概念的影响。为了使新模型能够容忍数据中的噪声,我们引入了一个变量精度模糊邻域粗糙集模型。此模型可以减少将样本分类为错误类别的可能性。最后,我们定义了模糊决策和条件属性之间的依存关系,并利用该依存关系来评估候选特征的重要性,从而设计出贪婪特征子集选择算法。将该算法与一些经典算法进行了比较。实验表明,该算法具有较高的分类性能,且特征选择数量较少。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号