首页> 外文期刊>Knowledge-Based Systems >Using neural word embeddings to model user behavior and detect user segments
【24h】

Using neural word embeddings to model user behavior and detect user segments

机译:使用神经词嵌入来建模用户行为并检测用户细分

获取原文
获取原文并翻译 | 示例

摘要

Modeling user behavior to detect segments of users to target and to whom address ads (behavioral targeting) is a problem widely-studied in the literature. Various sources of data are mined and modeled in order to detect these segments, such as the queries issued by the users. In this paper we first show the need for a user segmentation system to employ reliable user preferences, since nearly half of the times users reformulate their queries in order to satisfy their information need. Then we propose a method that analyzes the description of the items positively evaluated by the users and extracts a vector representation of the words in these descriptions (word embeddings). Since it is widely-known that users tend to choose items of the same categories, our approach is designed to avoid the so-called preference stability, which would associate the users to trivial segments. Moreover, we make sure that the interpretability of the generated segments is a characteristic offered to the advertisers who will use them. We performed different sets of experiments on a large real-world dataset, which validated our approach and showed its capability to produce effective segments. (C) 2016 Elsevier B.V. All rights reserved.
机译:对用户行为进行建模以检测要定位的用户群以及向其定位广告的用户(行为定位)是文献中广泛研究的问题。挖掘和建模各种数据源以检测这些段,例如用户发出的查询。在本文中,我们首先显示了一种使用可靠的用户首选项的用户细分系统的需求,因为近一半的时间用户重新格式化了他们的查询以满足他们的信息需求。然后,我们提出一种分析用户正面评价的项目的描述并提取这些描述中单词的矢量表示(单词嵌入)的方法。由于众所周知,用户倾向于选择相同类别的项目,因此我们的方法旨在避免所谓的“偏好稳定性”,后者会将用户与琐碎的细分相关联。此外,我们确保生成的细分的可解释性是提供给使用细分的广告客户的特征。我们在大型现实数据集上进行了不同的实验,这验证了我们的方法并显示了产生有效细分的能力。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号