首页> 外文期刊>Security and communication networks >A comparison of one-class bag-of-words user behavior modeling techniques for masquerade detection
【24h】

A comparison of one-class bag-of-words user behavior modeling techniques for masquerade detection

机译:用于伪装检测的一类词袋式用户行为建模技术的比较

获取原文
获取原文并翻译 | 示例

摘要

A masquerade attack is a consequence of identity theft. In such attacks, the impostor impersonates a legitimate insider while performing illegitimate activities. These attacks are very hard to detect and can cause considerable damage to an organization. Prior work has focused on user command modeling to identify abnormal behavior indicative of impersonation. In this paper, we investigate the performance of two one-class user behavior profiling techniques: one-class Support Vector Machines (ocSVMs) and a Hellinger distance-based user behavior profiling technique. Both techniques model bags of words or commands and do not model sequences of commands. We use both techniques for masquerade detection and compare the experimental results. The objective is to evaluate which modeling technique is most suitable for use in an operational monitoring system, hence our focus is on accuracy and operational performance characteristics. We show that one-class SVMs are most practical for deployment in sensors developed for masquerade detection in the general case. We also show that for specific users whose profile fits the average user profile, one-class SVMs may not be the best modeling approach. Such users pose a more serious threat since they may be easier to mimic. Copyright © 2011 John Wiley & Sons, Ltd.
机译:伪装袭击是身份盗用的结果。在此类攻击中,冒名顶替者在进行非法活动时会冒充合法的内部人员。这些攻击很难检测到,并且可能对组织造成相当大的损害。先前的工作集中在用户命令建模上,以识别表示假冒的异常行为。在本文中,我们研究了两种一类用户行为分析技术的性能:一类支持向量机(ocSVM)和基于Hellinger距离的用户行为分析技术。两种技术都对单词或命令的包进行建模,并且不对命令序列进行建模。我们将两种技术都用于伪装检测并比较实验结果。目的是评估哪种建模技术最适合在运营监控系统中使用,因此我们的重点是准确性和运营性能特征。我们证明,在一般情况下,一类SVM最适合部署在为假面舞检测而开发的传感器中。我们还显示,对于配置文件适合一般用户配置文件的特定用户,一类SVM可能不是最佳建模方法。这样的用户可能会更容易模仿,因此构成了更严重的威胁。版权所有©2011 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号