首页> 外文期刊>Knowledge-Based Systems >An efficient intrusion detection system based on hypergraph - Genetic algorithm for parameter optimization and feature selection in support vector machine
【24h】

An efficient intrusion detection system based on hypergraph - Genetic algorithm for parameter optimization and feature selection in support vector machine

机译:基于超图的高效入侵检测系统-支持向量机的参数优化和特征选择的遗传算法。

获取原文
获取原文并翻译 | 示例

摘要

Realization of the importance for advanced tool and techniques to secure the network infrastructure from the security risks has led to the development of many machine learning based intrusion detection techniques. However, the benefits and limitations of these techniques make the development of an efficient Intrusion Detection System (IDS), an open challenge. This paper presents an adaptive, and a robust intrusion detection technique using Hypergraph based Genetic Algorithm (HG - GA) for parameter setting and feature selection in Support Vector Machine (SVM). Hyper - clique property of Hypergraph was exploited for the generation of initial population to fasten the search for the optimal solution and to prevent the trap at the local minima. HG-GA uses a weighted objective function to maintain the trade-off between maximizing the detection rate and minimizing the false alarm rate, along with the optimal number of features. The performance of HG-GA SVM was evaluated using NSL-KDD intrusion dataset under two scenarios (i) All features and (ii) informative features obtained from HG - GA. Experimental results show the prominence of HG-GA SVM over the existing techniques in terms of classifier accuracy, detection rate, false alarm rate, and runtime analysis. (C) 2017 Elsevier B.V. All rights reserved.
机译:实现高级工具和技术以保护网络基础结构免受安全风险的重要性的认识,导致了许多基于机器学习的入侵检测技术的发展。但是,这些技术的优点和局限性使得有效的入侵检测系统(IDS)的开发成为一个开放的挑战。本文提出了一种自适应的,鲁棒的入侵检测技术,该技术使用基于超图的遗传算法(HG-GA)在支持向量机(SVM)中进行参数设置和特征选择。利用Hypergraph的超集团性质来生成初始种群,以加快寻找最佳解决方案的速度,并防止陷入局部最小值。 HG-GA使用加权目标函数来维持在最大化检测率和最小化误报率之间的权衡,以及最佳的功能数量。在以下两种情况下,使用NSL-KDD入侵数据集评估了HG-GA SVM的性能:(i)所有功能和(ii)从HG-GA获得的信息功能。实验结果表明,在分类器准确性,检测率,误报率和运行时分析方面,HG-GA SVM优于现有技术。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号