首页> 外文期刊>Knowledge-Based Systems >Possibilistic activity recognition with uncertain observations to support medication adherence in an assisted ambient living setting
【24h】

Possibilistic activity recognition with uncertain observations to support medication adherence in an assisted ambient living setting

机译:在不确定的观察条件下可能进行活动识别,以支持辅助生活环境中的药物依从性

获取原文
获取原文并翻译 | 示例

摘要

A recent trend in healthcare is to motivate patients to self-manage their health conditions in home based settings. Self-management programs guide and motivate patients to achieve self-efficacy in the self-management of their disease through a regime of educational and behavioural modification strategies. To improve self-management programs effectiveness and efficacy, we must consider Ambient Assisted Living (AAL) technologies (smart environments, activity recognition, aid acts planning), since they alleviate issues related to unreliable self-reported data by monitoring self-management activities. To improve self-management programs in smart environments, it is necessary to recognize the occupant behaviour from observed data. Observed data/attributes generated from various sources (sensors, questionnaires, low-level activity recognition) are certain to uncertain (imprecise, incomplete, missing), where several values are plausible instead of only one. Thus, activity recognition must consider heterogeneous observations (sources' types) and uncertainty in the activity recognition inputs (observations). To address this challenge, we propose an activity recognition approach based on possibilistic network classifiers with uncertain observations. We believe that this is the first work to consider possibilistic network classifiers for the recognition of activities in smart environments using uncertain observations. We have validated the approach on 780 synthetic scenarios illustrating behaviours related to medication adherence. The activity classifiers, based on knowledge and beliefs about the activities related to medication adherence, can correctly recognize 79% of an activity current state, which is comparable with approaches based on data driven naive Bayesian classifiers. Furthermore, the classification performance only decreases when we have highly partial to complete ignorance about the observations values. Hence, the validations results show the interest of activity recognition based on possibilistic network classifiers for handling uncertain observations. (C) 2017 Elsevier B.V. All rights reserved.
机译:医疗保健的最新趋势是激励患者在家庭环境中自我管理其健康状况。自我管理计划通过教育和行为调整策略来指导和激励患者实现疾病自我管理的自我效能。为了提高自我管理计划的有效性和效力,我们必须考虑环境辅助生活(AAL)技术(智能环境,活动识别,援助行为计划),因为它们通过监视自我管理活动来缓解与不可靠的自我报告数据有关的问题。为了改善智能环境中的自我管理程序,有必要从观察到的数据中识别出乘员的行为。从各种来源(传感器,调查表,低级别活动识别)生成的观察数据/属性肯定不确定(不确定,不完整,缺失),其中几个值是合理的,而不仅仅是一个。因此,活动识别必须考虑异构观察(来源类型)和活动识别输入(观测)的不确定性。为了解决这一挑战,我们提出了一种基于带有不确定观测值的可能网络分类器的活动识别方法。我们认为,这是考虑使用不确定性网络分类器进行智能环境中活动识别的第一项工作。我们已经在780个综合场景中验证了该方法,该场景说明了与药物依从性相关的行为。基于与药物依从性相关的活动的知识和信念,活动分类器可以正确识别活动状态的79%,这与基于数据驱动的朴素贝叶斯分类器的方法相当。此外,仅当我们对观测值完全不完全了解时,分类性能才会下降。因此,验证结果表明了基于可能的网络分类器进行活动识别以处理不确定性观察的兴趣。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号