首页> 外文期刊>Knowledge-Based Systems >Learning fuzzy semantic cell by principles of maximum coverage, maximum specificity, and maximum fuzzy entropy of vague concept
【24h】

Learning fuzzy semantic cell by principles of maximum coverage, maximum specificity, and maximum fuzzy entropy of vague concept

机译:通过模糊概念的最大覆盖度,最大特异性和最大模糊熵来学习模糊语义单元

获取原文
获取原文并翻译 | 示例

摘要

Concept modeling and learning have important significance in data mining, machine learning and knowledge discovery. In this paper a fuzzy semantic cell which is composed of a prototype P, a distance function d and a probability density function delta of granularity is considered as the smallest unit of vague concepts and the building brick of concept representation. For each fuzzy semantic cell we introduce three fundamental numeric characteristics, prototype P, expectation granularity R. and fuzzy entropy to characterize the underlying concept. Then a novel learning strategy for the fuzzy semantic cell is proposed by using the principles of maximum coverage, maximum specificity, and maximum fuzzy entropy. Furthermore a granularity control factor lambda is introduced into the learning strategy in order to make these principles coordinate with each other. The ultimate goal is to obtain a fuzzy semantic cell from a given data set which is the most appropriate to describe the data set. Finally the fuzzy semantic cell learning algorithm as well as the crisp semantic cell learning algorithm is formulated. We test the proposed methods on synthetic data and real-world data to demonstrate their feasibility and validity. (C) 2017 Published by Elsevier B.V.
机译:概念建模和学习在数据挖掘,机器学习和知识发现中具有重要意义。在本文中,由原型P,距离函数d和粒度的概率密度函数delta组成的模糊语义单元被视为模糊概念的最小单元和概念表示的基础。对于每个模糊语义单元,我们引入三个基本数值特征,即原型P,期望粒度R.和模糊熵,以表征基本概念。然后利用最大覆盖,最大特异性和最大模糊熵的原则,提出了一种新的模糊语义单元学习策略。此外,将粒度控制因子λ引入学习策略中,以使这些原理相互协调。最终目标是从给定的数据集中获得最适合描述数据集的模糊语义单元。最终提出了模糊语义单元学习算法和清晰语义单元学习算法。我们在合成数据和真实数据上测试了所提出的方法,以证明它们的可行性和有效性。 (C)2017由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号