首页> 外文期刊>Knowledge-Based Systems >Knowledge-leveraged transfer fuzzy C-Means for texture image segmentation with self-adaptive cluster prototype matching
【24h】

Knowledge-leveraged transfer fuzzy C-Means for texture image segmentation with self-adaptive cluster prototype matching

机译:自适应集群原型匹配的知识杠杆转移模糊C均值纹理图像分割

获取原文
获取原文并翻译 | 示例

摘要

We study a novel fuzzy clustering method to improve the segmentation performance on the target texture image by leveraging the knowledge from a prior texture image. Two knowledge transfer mechanisms, i.e. knowledge-leveraged prototype transfer (KL-PT) and knowledge-leveraged prototype matching (KL-PM) are first introduced as the bases. Applying them, the knowledge-leveraged transfer fuzzy C-means (KL-TFCM) method and its three-stage-interlinked framework, including knowledge extraction, knowledge matching, and knowledge utilization, are developed. There are two specific versions: KL-TFCM-c and KL-TFCM-f, i.e. the so-called crisp and flexible forms, which use the strategies of maximum matching degree and weighted sum, respectively. The significance of our work is fourfold: 1) Owing to the adjustability of referable degree between the source and target domains, KL-PT is capable of appropriately learning the insightful knowledge, i.e. the cluster prototypes, from the source domain; 2) KL-PM is able to self adaptively determine the reasonable pairwise relationships of cluster prototypes between the source and target domains, even if the numbers of clusters differ in the two domains; 3) The joint action of KL-PM and KL-PT can effectively resolve the data inconsistency and heterogeneity between the source and target domains, e.g. the data distribution diversity and cluster number difference. Thus, using the three stage-based knowledge transfer, the beneficial knowledge from the source domain can be extensively, self-adaptively leveraged in the target domain. As evidence of this, both KL-TFCM-c and KL-TFCM-f surpass many existing clustering methods in texture image segmentation; and 4) In the case of different cluster numbers between the source and target domains, KL-TFCM-f proves higher clustering effectiveness and segmentation performance than does KL-TFCM-c. (C) 2017 Elsevier B.V. All rights reserved.
机译:我们研究一种新颖的模糊聚类方法,以利用先前纹理图像的知识来提高目标纹理图像的分割性能。首先介绍了两种知识转移机制,即知识杠杆原型转移(KL-PT)和知识杠杆原型匹配(KL-PM)。应用这些知识,开发了知识杠杆转移模糊C均值(KL-TFCM)方法及其包括知识提取,知识匹配和知识利用的三阶段互连框架。有两个特定的版本:KL-TFCM-c和KL-TFCM-f,即所谓的明快和灵活形式,它们分别使用最大匹配度和加权和的策略。我们工作的意义有四个方面:1)由于源域和目标域之间可参考程度的可调性,KL-PT能够从源域中适当地学习有见地的知识,即群集原型; 2)KL-PM能够自适应地确定源域和目标域之间群集原型的合理成对关系,即使两个域中群集的数量不同也是如此; 3)KL-PM和KL-PT的共同行动可以有效地解决源域和目标域之间的数据不一致和异构问题。数据分布的多样性和簇数的差异。因此,使用基于三个阶段的知识转移,可以在目标域中广泛,自适应地利用来自源域的有益知识。作为证明,KL-TFCM-c和KL-TFCM-f在纹理图像分割中都超过了许多现有的聚类方法。和4)在源域和目标域之间的簇号不同的情况下,与KL-TFCM-c相比,KL-TFCM-f被证明具有更高的聚类效果和分割性能。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2017年第15期|33-50|共18页
  • 作者单位

    Jiangnan Univ, Sch Digital Media, Wuxi, Jiangsu, Peoples R China|Case Western Reserve Univ, Case Ctr Imaging Res, Cleveland, OH 44106 USA|Case Western Reserve Univ, Univ Hosp Cleveland, Med Ctr, Dept Radiol, Cleveland, OH 44106 USA;

    Jiangnan Univ, Sch Digital Media, Wuxi, Jiangsu, Peoples R China;

    Jiangnan Univ, Sch Digital Media, Wuxi, Jiangsu, Peoples R China;

    Case Western Reserve Univ, Case Ctr Imaging Res, Cleveland, OH 44106 USA|Case Western Reserve Univ, Univ Hosp Cleveland, Med Ctr, Dept Radiol, Cleveland, OH 44106 USA;

    Jiangnan Univ, Sch Digital Media, Wuxi, Jiangsu, Peoples R China;

    Jiangnan Univ, Sch Digital Media, Wuxi, Jiangsu, Peoples R China;

    Case Western Reserve Univ, Case Ctr Imaging Res, Cleveland, OH 44106 USA|Case Western Reserve Univ, Univ Hosp Cleveland, Med Ctr, Dept Radiol, Cleveland, OH 44106 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fuzzy C-means (FCM); Transfer learning; Knowledge transfer; Image segmentation; Data heterogeneity;

    机译:模糊C均值(FCM);转移学习;知识转移;图像分割;数据异质性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号