首页> 外文期刊>Knowledge-Based Systems >A variable precision grey-based multi-granulation rough set model and attribute reduction
【24h】

A variable precision grey-based multi-granulation rough set model and attribute reduction

机译:基于可变精度灰色的多粒度粗糙集模型和属性约简

获取原文
获取原文并翻译 | 示例

摘要

Exploring rough set theory in the viewpoint of multi-granulation gradually attracts scholars attention in recent years. To handle uncertainty problems with grey information, in this paper, we devise a variable precision grey multi-granulation rough set (VPG-MGRS) by combining with grey system theory and multi granulation rough set. We utilize the grey relational relation for further establishing multiple granular structures and then adopt a threshold to control the number of condition satisfied. After discussing several important properties of VPG-MGRS, we discover that the proposed VPG-MGRS model is a generalized classical MGRS. Meanwhile, we redefine the significance measures of attribute based on VPG-MGRS for attribute reduction. Last but not least, theoretical studies and numerical experiments have demonstrated that the VPG-MRGS-based attribute reduction algorithm is of feasibility and effectivity in handling uncertainty problems with grey information and provides a new technique for knowledge discovery, and the VPG-MGRS model enlarges the application fields of MGRS. (C) 2018 Elsevier B.V. All rights reserved.
机译:近年来,从多粒度的角度探索粗糙集理论逐渐引起学者的关注。为了解决灰色信息的不确定性问题,本文结合灰色系统理论和多颗粒粗糙集,设计了一种变精度灰色多颗粒粗糙集(VPG-MGRS)。我们利用灰色关联关系进一步建立多个粒度结构,然后采用阈值来控制满足条件的数量。在讨论了VPG-MGRS的几个重要特性之后,我们发现所提出的VPG-MGRS模型是广义的经典MGRS。同时,我们重新定义了基于VPG-MGRS进行属性约简的属性显着性度量。最后但并非最不重要的一点是,理论研究和数值实验表明,基于VPG-MRGS的属性约简算法在处理具有灰色信息的不确定性问题方面具有可行性和有效性,并为知识发现提供了新技术,并且VPG-MGRS模型得以扩大MGRS的应用领域。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号