首页> 外文期刊>Knowledge-Based Systems >Determining attribute weights for multiple attribute decision analysis with discriminating power in belief distributions
【24h】

Determining attribute weights for multiple attribute decision analysis with discriminating power in belief distributions

机译:在信念分布中具有判别力的多属性决策分析中确定属性权重

获取原文
获取原文并翻译 | 示例

摘要

Attribute weight assignment plays an important role in multiple attribute decision analysis (MADA). When the performances of alternatives on each attribute are expressed by distributions instead of single values, how to use the differences among the performances to obtain attribute weights is an interesting but difficult issue. To address this issue, in this paper, we propose a method for obtaining attribute weights from discriminating power in belief distributions. With the consideration of the differences among the utilities of all assessment grades used to profile belief distributions, the dissimilarity based discriminating power, the standard deviation based discriminating power and the Gini's mean difference based discriminating power of the performances of all alternatives on each attribute are constructed to determine three sets of respective weights of attributes. They are convexly combined using three coefficients to generate integrated weights of attributes. To relieve the burden on a decision maker to provide precise values for the three coefficients, they are allowed to change between 0 and 1, as long as their sum is equal to 1. Under such constraints on the three coefficients, an optimization model is constructed to determine the minimum and maximum expected utilities of each alternative. From the expected utilities, all alternatives are then compared using Hurwicz rule with the provided optimism degree interval to generate solutions to MADA problems. The transitivity of the comparison outcomes among three alternatives under a given optimism degree interval is theoretically analyzed to guarantee the rationality of the outcomes. A focal form selection problem is investigated to demonstrate the applicability and validity of the proposed method. (C) 2017 Elsevier B.V. All rights reserved.
机译:属性权重分配在多属性决策分析(MADA)中起着重要作用。当每个属性的备选方案的绩效用分布而不是单个值表示时,如何利用绩效之间的差异来获得属性权重是一个有趣但困难的问题。为了解决这个问题,在本文中,我们提出了一种通过在信念分布中区分能力来获得属性权重的方法。考虑到用于评估信念分布的所有评估等级的效用之间的差异,构造了基于差异的区分能力,基于标准差的区分能力以及基于基尼均值的区分力的每个属性对所有备选方案的区分能力确定三组各自的权重。使用三个系数将它们凸组合,以生成属性的综合权重。为了减轻决策者为三个系数提供精确值的负担,允许它们在0和1之间变化,只要它们的总和等于1。在这三个系数的约束下,构建了优化模型确定每种替代方案的最小和最大预期效用。然后从预期的效用中,使用Hurwicz规则与提供的乐观度区间对所有替代方案进行比较,以生成MADA问题的解决方案。从理论上分析了在给定的乐观度区间内三个备选方案之间比较结果的可及性,以保证结果的合理性。研究了焦点表格选择问题,以证明该方法的适用性和有效性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号