首页> 外文期刊>Knowledge-Based Systems >Microblog sentiment analysis with weak dependency connections
【24h】

Microblog sentiment analysis with weak dependency connections

机译:具有弱依赖关系的微博情感分析

获取原文
获取原文并翻译 | 示例

摘要

With the rise of microblogging services like Twitter and Sina Weibo, users are able to post their real-time mood and opinions conveniently and swiftly. At the same time, the ubiquitous social media results in abundant social relations such as following and follower relations. Social relations create a new source for microblog sentiment analysis, which attracts a great amount of attention in recent years. There are two theories that support the use of social relations for sentiment analysis - sentiment consistency and emotional contagion. However, most existing microblog sentiment analysis methods only employ direct connections which cannot fully use the heterogeneous connections in social media. As online social networks consist of communities and nodes in the same community which form weak dependency connections usually share similarities, we investigate how to exploit weak dependency connections as an aspect of social contexts for microblog sentiment analysis in this paper. In particular, we employ community detection methods to capture weak dependency connections and propose a new model for microblog sentiment analysis which incorporates weak dependency connections, sentiment consistency, and emotional contagion together with text information. Experimental results on two real Twitter datasets demonstrate that our proposed model can outperform baseline methods consistently and significantly. (C) 2017 Elsevier B.V. All rights reserved.
机译:随着Twitter和Sina Weibo等微博客服务的兴起,用户可以方便快捷地发布其实时心情和观点。同时,无处不在的社交媒体导致了丰富的社会关系,例如追随者和追随者关系。社会关系为微博情感分析创造了新的来源,近年来引起了极大的关注。有两种理论支持将社会关系用于情感分析,即情感一致性和情感传染。但是,大多数现有的微博情感分析方法仅采用直接连接,无法充分利用社交媒体中的异构连接。由于在线社交网络由形成弱依赖关系的社区和同一社区中的节点组成,通常具有相似性,因此我们在本文中研究了如何利用弱依赖关系作为社交上下文的一个方面来进行微博情感分析。特别是,我们采用社区检测方法来捕获弱依赖关系,并为微博情感分析提出了一种新模型,该模型将弱依赖关系,情感一致性和情感传染与文本信息结合在一起。在两个真实的Twitter数据集上的实验结果表明,我们提出的模型可以一致且显着地优于基线方法。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号