首页> 外文期刊>Knowledge-Based Systems >Knowledge discovery of consensus and conflict interval-based temporal patterns: A novel group decision approach
【24h】

Knowledge discovery of consensus and conflict interval-based temporal patterns: A novel group decision approach

机译:基于共识和冲突间隔的时间模式的知识发现:一种新颖的群体决策方法

获取原文
获取原文并翻译 | 示例

摘要

Temporal pattern mining problems, developed from sequential pattern mining problems, have recently been discussed frequently regarding the gathering of temporal sequences and aggregating them in order to gain insight into consensus decision-making. Existing temporal pattern mining problems reveal only point-based relations; however, in reality, several interval-based circumstances exist, which enable precisely describing temporal relationships. Practical applications include the order and duration of investors purchasing stocks and portfolio management. This study proposes a novel model and its associated algorithm for identifying consensus and conflict patterns from user-provided subjective interval-based temporal sequences. We conducted an experiment on stock investments in the semiconductor industry by drawing on collected authentic datasets and user ratings to demonstrate the model's effectiveness. The experimental results reveal six consensus patterns and one pair of conflict patterns from the participants' subjective investment intuitions, which is consistent with common sense concerning the semiconductor stock market. (C) 2017 Elsevier B.V. All rights reserved.
机译:从顺序模式挖掘问题发展而来的时间模式挖掘问题,最近在时间序列的收集和聚集上经常被讨论,以深入了解共识决策。现有的时间模式挖掘问题仅揭示了基于点的关系。但是,实际上,存在几种基于间隔的情况,这些情况使得可以精确地描述时间关系。实际应用包括投资者购买股票的顺序和持续时间以及投资组合管理。这项研究提出了一种新颖的模型及其相关算法,用于从用户提供的基于主观区间的时间序列中识别共识和冲突模式。我们利用收集的真实数据集和用户评分对半导体行业的股票投资进行了实验,以证明该模型的有效性。实验结果从参与者的主观投资直觉中揭示了六个共识模式和一对冲突模式,这与关于半导体股票市场的常识相一致。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号