首页> 外文期刊>Knowledge-Based Systems >Spatio-temporal pattern discovery in sensor data: A multivalued decision systems approach
【24h】

Spatio-temporal pattern discovery in sensor data: A multivalued decision systems approach

机译:传感器数据中的时空模式发现:多值决策系统方法

获取原文
获取原文并翻译 | 示例

摘要

Discovering novel and interesting spatio-temporal patterns in sensor data is a major challenge in many scientific domains. Such data are often continuous, unbounded, and associated with high speed, time variant distribution with local and spatial trends. This paper presents a formalism that includes an extension of classical rough set inference mechanism to reason with space-time variant data streams. The concept of multivalued decision systems has been used to account for multiple patterns in a single time window or snapshot. Such patterns or templates are incorporated in rough set-based rule induction process. A framework for sensor data integration is illustrated by using a space-time clustering mechanism followed by the generation of templates and local rules from such clusters. The multivalued decision system allows mining complex multiple patterns instead of a single value in a given template without requiring complex feature transformation. It also allows us to quantify and estimate potential data compression and associated uncertainty parameters. Finally, the results are validated and compared with other related algorithms. In general, the framework will help us understand the underlying reasoning mechanism about the "part and whole" or spatio-temporal mereological relationship without sacrificing the semantics of the sensor data attributes. (C) 2016 Published by Elsevier B.V.
机译:在传感器数据中发现新颖有趣的时空模式是许多科学领域的主要挑战。这样的数据通常是连续的,无边界的,并且与具有局部和空间趋势的高速,时变分布相关。本文提出了一种形式主义,其中包括对经典粗糙集推理机制的扩展,以使用时空变异数据流进行推理。多值决策系统的概念已用于说明单个时间窗口或快照中的多个模式。这样的模式或模板被合并到基于粗糙集的规则归纳过程中。通过使用时空聚类机制,然后从此类聚类中生成模板和本地规则,说明了传感器数据集成的框架。多值决策系统允许挖掘复杂的多个模式而不是给定模板中的单个值,而无需复杂的特征转换。它还使我们能够量化和估计潜在的数据压缩以及相关的不确定性参数。最后,对结果进行验证并与其他相关算法进行比较。通常,该框架将帮助我们在不牺牲传感器数据属性的语义的情况下,了解有关“部分和整体”或时空关系的基本推理机制。 (C)2016由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号